Experimental Study on Beneficiation of Coarse Concentrate from Shizhuyuan Magnetite Mine
-
摘要:
柿竹园钨钼铋萤石多金属矿伴生有少量的磁铁矿,其全铁品位为7.15%,磁铁矿中铁品位为1.68%,占全铁的23.50%。该钨钼铋萤石多金属矿整个选矿工艺流程采用“柿竹园法”,其中,在回收钨、钼、铋、萤石等有用矿物前,采用中磁磁选将磁铁矿优先脱出,以避免磁铁矿对后续选别作业造成干扰,产出磁铁矿粗精矿。由于近年来铁矿石价格上涨态势明显,为进一步提高矿产资源的综合利用率和挖掘企业新经济增长点,决定对该磁铁矿粗精矿进行提质选矿实验研究。通过对该磁铁矿粗精矿矿石性质进行研究,发现该磁铁矿粗精矿存在嵌布粒度细、含磁硫高的特点。为提高磁铁矿精矿品质,必须提高磁铁矿精矿中铁的品位,同时还要降低磁铁矿精矿中硫的含量。提高磁铁矿精矿铁品位采用细磨的方法,使磁铁矿充分单体解离,然后通过弱磁选可将铁精矿品位提高;而要降低磁铁矿精矿中硫含量的方法,一般来说采用反浮选脱硫,需要通过实验找到跟该矿石性质相适应的反浮选脱硫工艺流程与参数,确保磁铁矿中磁硫的高效脱除。在经过系统的选矿实验研究后,确定了采用先脱磁再反浮选脱硫,再通过阶段磨矿阶段选别的选矿工艺流程,可以大幅度提高最终磁铁矿精矿品质。在磁铁矿粗精矿品位TFe 38.19%、含S 4.51%时,可以获得最终磁铁矿精矿品位TFe 60.85%、含S 0.99%,铁作业回收率72.13%的良好实验指标。该工艺在现场得到应用,通过优化现场流程结构配置,取得良好效果,为企业新增经济效益显著。
Abstract:A small amount of magnetite is associated with the Shizhuyuan Tungsten Molybdenum Bismuth Fluorite polymetallic ore, the total iron grade is 7.15%, the iron grade in the magnetite is 1.68%, which is 23.50% of the total iron. “Shizhuyuan method” is used in the whole beneficiation process of the tungsten-molybdenum-bismuth-fluorite polymetallic ore, in which the magnetite is preferentially removed by medium magnetic separation before recovering tungsten, molybdenum, bismuth, fluorite and other useful minerals, in order to avoid the interference of magnetite to the subsequent separation operation, the coarse magnetite concentrate is produced. In order to further improve the comprehensive utilization rate of mineral resources and excavate the new economic growth point of the mining enterprises, it is decided to carry out the experimental study on beneficiation of coarse concentrate of magnetite ore. Through the study on the properties of the magnetite coarse concentrate, it is found that the magnetite coarse concentrate has fine particle size distribution and high magnetic sulfur content. In order to improve the quality of magnetite concentrate, the grade of iron in magnetite concentrate must be raised, and the sulfur content in magnetite concentrate must be reduced. To raise the iron grade of magnetite concentrate, fine grinding method is used to separate magnetite from its monomer, and then the iron grade of magnetite concentrate can be raised by weak magnetic separation, while to reduce the sulfur content of magnetite concentrate, reverse flotation is generally used to remove sulfur, it is necessary to find out the process flow and parameters of reverse flotation desulfurization suitable to the property of the ore in order to ensure the efficient removal of magnetic sulfur from magnetite ore. After the systematic experimental study on beneficiation, it is determined that the final magnetite concentrate quality can be greatly improved by first demagnetizing, then by reverse flotation, and then by stage grinding. When the magnetite rough concentrate grade TFe 38.19% and S 4.51% , the final magnetite concentrate grade TFe 60.85% , S 0.99% and iron recovery 72.13% can be obtained. The process has been applied in the field, and good results have been achieved by optimizing the configuration of the field flow structure.
-
Key words:
- Magnetite /
- Fine particle size /
- High magnetic sulfur /
- Demagnetization /
- Reverse flotation /
- Grinding
-
-
表 1 磁铁矿粗精矿化学多元素分析结果/%
Table 1. Result of chemical multi-element analysis of magnetite rough concentrate
TFe S SiO2 CaF2 WO3 Sn Mo Bi Al2O3 CaO 38.19 4.51 20.99 12.78 0.08 0.12 0.003 0.05 3.24 4.78 表 2 磁铁矿粗精矿粒度筛析结果
Table 2. Result of particle size analysis of magnetite coarse concentrate
粒级/mm 产率/% 品位/% 分布率/% 个别 负累计 TFe S TFe S +0.15 11.73 100.00 19.51 1.21 5.99 3.15 −0.15+0.10 13.19 88.27 18.83 1.13 6.50 3.30 −0.10+0.075 9.86 75.08 23.14 2.81 5.97 6.14 −0.075+0.045 20.45 65.22 34.39 6.22 18.42 28.20 −0.045+0.030 11.63 44.77 46.14 6.50 14.05 16.76 −0.030+0.025 5.50 33.14 49.89 6.14 7.18 7.49 −0.025+0.019 9.85 27.64 56.56 5.62 14.59 12.27 −0.019 17.79 17.79 58.58 5.75 27.29 22.68 合计 100.00 38.19 4.51 100.00 100.00 表 3 脱磁与不脱磁脱硫实验结果
Table 3. Desulfurization test results of demagnetization and non demagnetization reverse flotation
实验条件 产品名称 产率/% 品位/% 回收率/% Fe S Fe S 脱磁 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫为矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 不脱磁 高硫铁 18.11 55.91 20.04 26.45 79.76 脱硫为矿 81.89 34.38 1.12 73.55 20.24 给矿 100.00 38.28 4.55 100.00 100.00 表 4 磨矿细度反浮选脱硫实验结果
Table 4. Desulfurization test results of grinding fineness reverse flotation
−0.074 mm
含量/%产品名称 产率/% 品位/% 回收率/% Fe S Fe S 65.22 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 73.61 高硫铁 14.90 55.81 24.61 21.76 81.67 脱硫尾矿 85.10 35.14 0.97 78.24 18.33 给矿 100.00 38.22 4.49 100.00 100.00 85.27 高硫铁 16.93 54.11 21.45 23.99 80.70 脱硫尾矿 83.07 34.95 1.05 76.01 19.30 给矿 100.00 38.19 4.50 100.00 100.00 94.56 高硫铁 19.34 52.40 18.06 26.52 77.10 脱硫尾矿 80.66 34.82 1.29 73.48 22.90 给矿 100.00 38.22 4.53 100.00 100.00 表 5 硫酸用量反浮选脱硫实验结果
Table 5. Test results of desulfuration by reverse flotation with sulfuric acid consumption
硫酸用量/(g·t−1) 产品名称 产率/% 品位/% 回收率/% Fe S Fe S 0 高硫铁 16.40 54.26 23.30 23.28 85.29 脱硫尾矿 83.60 35.07 0.79 76.72 14.71 给矿 100.00 38.22 4.48 100.00 100.00 500 高硫铁 14.62 55.24 26.46 21.16 84.83 脱硫尾矿 85.38 35.25 0.81 78.84 15.17 给矿 100.00 38.17 4.56 100.00 100.00 1000 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 1500 高硫铁 11.22 57.50 28.84 16.90 72.39 脱硫尾矿 88.78 35.74 1.39 83.10 27.61 给矿 100.00 38.18 4.47 100.00 100.00 2000 高硫铁 10.33 57.87 29.64 15.62 67.74 脱硫尾矿 89.67 36.00 1.63 84.38 32.26 给矿 100.00 38.26 4.52 100.00 100.00 表 6 硫酸铜用量反浮选脱硫实验结果
Table 6. Test results of desulfuration by reverse flotation with copper sulfate consumption
硫酸铜
用量/(g·t−1)产品名称 产率/% 品位/% 回收率/% Fe S Fe S 150 高硫铁 12.97 56.10 27.62 19.02 79.43 脱硫尾矿 87.03 35.59 1.07 80.98 20.57 给矿 100.00 38.25 4.51 100.00 100.00 200 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 250 高硫铁 14.17 56.20 26.42 20.86 83.94 脱硫尾矿 85.83 35.21 0.83 79.14 16.06 给矿 100.00 38.18 4.46 100.00 100.00 300 高硫铁 14.88 56.19 25.22 21.89 83.95 脱硫尾矿 85.12 35.06 0.84 78.11 16.05 给矿 100.00 38.20 4.47 100.00 100.00 表 7 捕收剂种类与用量反浮选脱硫实验结果
Table 7. Test results of desulfuration by reverse flotation with type and amount of collector
捕收剂种
类与用量/
(g·t−1)产品名称 产率/% 品位/% 回收率/% Fe S Fe S 乙硫氮300+2#油100 高硫铁 7.61 57.31 28.54 11.42 47.32 脱硫尾矿 92.39 36.63 2.62 88.58 52.68 给矿 100.00 38.20 4.59 100.00 100.00 丁黄药300+2#油100 高硫铁 12.31 56.86 27.14 18.32 74.41 脱硫尾矿 87.69 35.59 1.31 81.68 25.59 给矿 100.00 38.21 4.49 100.00 100.00 丁黄药300+石油磺酸钠100 高硫铁 14.65 52.71 18.32 20.18 59.38 脱硫尾矿 85.35 35.78 2.15 79.82 40.62 给矿 100.00 38.26 4.52 100.00 100.00 丁铵黑药400 高硫铁 19.35 50.24 13.61 25.44 58.78 脱硫尾矿 80.65 35.34 2.29 74.56 41.22 给矿 100.00 38.22 4.48 100.00 100.00 丁黄药300+丁铵黑药100 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 乙硫氮300+丁铵黑药100 高硫铁 10.31 54.37 24.06 14.64 55.12 脱硫尾矿 89.69 36.43 2.25 85.36 44.88 给矿 100.00 38.28 4.50 100.00 100.00 表 8 丁黄药与丁铵黑药配比反浮选脱硫实验结果
Table 8. Test results of desulfuration by reverse flotation with ratio of xanthate and ammonium butoxide
丁黄药与丁铵
黑药配比产品名称 产率/% 品位/% 回收率/% Fe S Fe S 1∶1 高硫铁 19.86 54.20 20.19 28.13 88.52 脱硫尾矿 80.14 34.31 0.65 71.87 11.48 给矿 100.00 38.26 4.53 100.00 100.00 2∶1 高硫铁 16.72 55.03 22.82 24.10 85.55 脱硫尾矿 83.28 34.80 0.77 75.90 14.45 给矿 100.00 38.18 4.46 100.00 100.00 3∶1 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 4∶1 高硫铁 12.31 56.41 27.72 18.19 75.49 脱硫尾矿 87.69 35.61 1.26 81.81 24.51 给矿 100.00 38.17 4.52 100.00 100.00 5∶1 高硫铁 11.25 56.48 28.31 16.62 69.84 脱硫尾矿 88.75 35.92 1.55 83.38 30.16 给矿 100.00 38.23 4.56 100.00 100.00 6∶1 高硫铁 9.84 57.20 28.93 14.73 63.26 脱硫尾矿 90.16 36.14 1.83 85.27 36.74 给矿 100.00 38.21 4.50 100.00 100.00 表 9 浮选浓度反浮选脱硫实验结果
Table 9. Flotation concentration reverse flotation desulfurization test results
浮选浓度/% 产品名称 产率/% 品位/% 回收率/% Fe S Fe S 25 高硫铁 10.83 57.06 28.65 16.17 68.65 脱硫尾矿 89.17 35.92 1.59 83.83 31.35 给矿 100.00 38.21 4.52 100.00 100.00 30 高硫铁 12.09 56.74 28.34 17.93 75.64 脱硫尾矿 87.91 35.71 1.26 82.07 24.36 给矿 100.00 38.25 4.53 100.00 100.00 35 高硫铁 13.11 56.13 28.16 19.22 82.04 脱硫尾矿 86.89 35.59 0.93 80.78 17.96 给矿 100.00 38.28 4.50 100.00 100.00 40 高硫铁 13.75 56.01 27.46 20.17 83.72 脱硫尾矿 86.25 35.35 0.85 79.83 16.28 给矿 100.00 38.19 4.51 100.00 100.00 45 高硫铁 14.48 55.34 25.51 20.96 81.36 脱硫尾矿 85.52 35.33 0.99 79.04 18.64 给矿 100.00 38.23 4.54 100.00 100.00 表 10 脱硫尾矿再磨细度磁选实验
Table 10. Test results of regrinding fineness magnetic separation of desulfurization tailings
−0.037 mm
含量/%产品名称 产率/% 品位/% 回收率/% Fe S Fe S 80 铁精矿 58.61 56.20 0.90 93.05 62.06 尾矿 41.39 5.95 0.78 6.95 37.94 给矿 100.00 35.40 0.85 100.00 100.00 85 铁精矿 56.36 57.80 0.94 92.02 62.33 尾矿 43.64 6.47 0.73 7.98 37.67 给矿 100.00 35.40 0.85 100.00 100.00 90 铁精矿 54.07 59.61 0.96 91.05 61.07 尾矿 45.93 6.90 0.72 8.95 38.93 给矿 100.00 35.40 0.85 100.00 100.00 95 铁精矿 52.56 60.85 0.99 90.35 61.22 尾矿 47.44 7.20 0.69 9.65 38.78 给矿 100.00 35.40 0.85 100.00 100.00 表 11 工业调试流程查定指标
Table 11. Inspection indexes of industrial commissioning process
产品名称 产率/% 品位/% 回收率/% Fe S Fe S 高硫铁 14.10 55.47 27.34 20.46 84.54 尾矿1 24.73 6.82 0.62 4.41 3.36 铁精矿 45.31 60.46 0.97 71.66 9.64 尾矿2 15.86 8.37 0.71 3.47 2.46 给矿 100.00 38.23 4.56 100.00 100.00 表 12 铁精矿生产指标情况
Table 12. Production indexesof iron concentrate
时间 Fe品位% S品位% 2019年09月 60.83 0.96 2019年10月 60.31 0.99 2019年11月 60.57 0.97 2019年12月 60.76 0.98 2020年03月 60.42 0.96 2020年04月 60.54 0.99 -
[1] 陈于海, 胡佛明, 程传麟, 等. 超贫磁铁矿高压辊磨-粗细双抛尾选矿工艺研究[J]. 矿产综合利用, 2019(4):46-49. doi: 10.3969/j.issn.1000-6532.2019.04.009
CHEN Y H, HU F M, CHENG C L, et al. Study on mineral processing of high-pressure roller mill-coarse and fine double throwing tailings for ultra-low-grade magnetite ores[J]. Multipurpose Utilization of Mineral Resources, 2019(4):46-49. doi: 10.3969/j.issn.1000-6532.2019.04.009
[2] 刘国蓉, 刘万峰, 刘承帅. 某磁铁矿提质降杂技术[J]. 矿冶, 2018, 27(6):10-15. doi: 10.3969/j.issn.1005-7854.2018.06.003
LIU G R, LIU W F, LIU C S. Technology of improving quality and reducing impurity of magnetite ore[J]. Mining and Metallurgy, 2018, 27(6):10-15. doi: 10.3969/j.issn.1005-7854.2018.06.003
[3] 朱殿冰, 朱巨建, 赵通林. 磁选柱结构改进及优化研究[J]. 中国矿业, 2016, 25(5): 121-123.
ZHU D B, ZHU J J, ZHAO T L. Study on improvement and optimization of magnetic separation column structure [J]. China Mining Magazine, 2016, 25(5): 121-123.
[4] 李炼, 戴思行, 王飞洋, 等. 改善赤铁矿磨矿效果的试验探索[J]. 矿产综合利用, 2019(1):61-65. doi: 10.3969/j.issn.1000-6532.2019.01.013
LI L, DAI S X, WANG F Y, et al. Exporing of improving the grinading effects of hematite[J]. Multipurpose Utilization of Mineral Resources, 2019(1):61-65. doi: 10.3969/j.issn.1000-6532.2019.01.013
[5] 王录锋, 张高庆. 攀枝花低品位钒铁磁铁矿钛组合捕收剂研究[J]. 矿产综合利用, 2020(2):65-70. doi: 10.3969/j.issn.1000-6532.2020.02.011
WANG L F, ZHANG G Q. Study on the titanium combination capture agent for low-grade vanadium titanium magnetite of Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2020(2):65-70. doi: 10.3969/j.issn.1000-6532.2020.02.011
[6] 范素月, 马卫东, 高 磊. 淘洗磁选机在某些磁铁矿精选中的应用[J]. 现代矿业, 2012(12):96-99. doi: 10.3969/j.issn.1674-6082.2012.12.035
FAN S Y, MA W D, GAO L. Application of elutriating magnetic separator in some magnetite concentrate[J]. Modern Mining, 2012(12):96-99. doi: 10.3969/j.issn.1674-6082.2012.12.035
-