-
摘要:
为了探索内蒙某铁矿石的工艺矿物学性质,对该矿石开展了较为全面的工艺矿物研究,结果表明:该矿石全铁品位为23.52%,矿石中的铁主要以磁性铁的形式存在,占总铁的85.60%, 其次是赤铁矿、褐铁矿中的铁,占总铁的7.35%,以硅酸盐形式存在的铁占总铁的6.33%,只有微量的铁在硫化矿物中,占总铁的0.72%;矿石的主要金属矿物为磁铁矿,含有少量的赤铁矿、黄铁矿,可见微量的黄铜矿和闪锌矿,脉石矿物主要有石英、长石(钾长石、钠长石、斜长石)、角闪石(阳起石、绿钠闪石等)、云母(黑云母、白云母等)、绿泥石、方解石、磷灰石等;通过对该矿石开展系统的工艺矿物学研究,为该类资源的综合开发利用提供了主要的基础数据支撑。
Abstract:In order to explore the technological mineralogical properties of an iron ore in Inner Mongolia, a more comprehensive technological mineral study was carried out on the ore. The results showed that the iron grade of the ore was 23.52%, and the iron in the ore mainly existed in the form of magnetic iron. 85.60% of the total iron, followed by iron in hematite and limonite, accounting for 7.35% of the total iron, iron in the form of silicate accounting for 6.33% of the total iron, only a trace amount of iron in sulfide minerals, it accounts for 0.72% of the total iron; the main metal mineral of the ore is magnetite, which contains a small amount of hematite and pyrite, and traces of chalcopyrite and sphalerite are visible. Gangue minerals mainly include quartz and feldspar (potassium Feldspar, albite, plagioclase), hornblende (actinolite, chlorite, etc.), mica (biotite, muscovite, etc.), chlorite, calcite, apatite, etc. The ore carries out systematic technological mineralogical research, which provides major basic data support for the comprehensive development and utilization of this type of resource.
-
Key words:
- Process mineralogy /
- Iron ore /
- Chemical analysis /
- Mineral composition /
- dissemination feature /
- Particle size /
- Intergrowth
-
-
表 1 矿石化学成分分析结果/%
Table 1. Results of chemical composition analysis of ore
TFe FeO SiO2 Al2O3 TiO2 Na2O Mn CaO MgO 23.52 12.66 51.71 6.80 0.30 1.32 0.072 2.91 2.21 K2O P S V Cu Pb Zn Ni 烧失 1.33 0.075 0.18 0.008 <0.05 <0.05 <0.05 <0.05 1.65 表 2 矿石中铁的化学物相分析结果
Table 2. Results of chemical phase analysis of iron in ores
名称 磁性铁中Fe 赤褐铁矿中Fe 硅酸铁中Fe 硫化物中Fe 总铁 含量/% 20.15 1.73 1.49 0.17 23.54 占有率/% 85.60 7.35 6.33 0.72 100.00 表 3 矿石的矿物组成及相对含量
Table 3. Mineral composition and relative content of ores
矿物名称 含量/% 矿物名称 含量/% 磁铁矿 27.98 角闪石 11.04 赤、褐铁矿 2.47 云母 5.15 钛铁矿等 <0.4 绿泥石 3.53 黄铁矿、磁黄铁矿 0.3 方解石等 3.23 其他硫化物矿物 <0.2 磷灰石 0.21 石英 29.79 其他 余量 长石 15.61 表 4 磁铁矿粒度分布情况
Table 4. Particle size distribution of magnetite
粒级/
mm+0.833 -0.833
+0.589-0.589
+0.417-0.417
+0.295-0.295
+0.208-0.208
+0.147-0.147
+0.104-0.104
+0.074-0.074
+0.043-0.043
+0.020-0.020
+0.015-0.015
+0.010-0.010 含量/% 0.96 0.69 9.62 14.99 17.52 18.89 13.97 8.33 9.48 5.05 0.27 0.19 0.04 累积量% 0.96 1.65 11.27 26.26 43.78 62.67 76.64 84.97 94.45 99.5 99.77 99.96 100.00 表 5 一段磨矿不同磨矿细度磁铁矿解离度分析结果
Table 5. Analysis results of dissociation degree of magnetite with different grinding fineness in the first grinding stage
磨矿细度
-0.074 mm /%磁铁矿/% 合计/% 单体 与脉石连生 19.3 72.98 27.02 100.00 42.3 84.16 15.84 100.00 56.9 85.12 14.88 100.00 67.4 92.39 7.61 100.00 83.3 92.52 7.48 100.00 91.7 92.56 7.44 100.00 表 6 二段磨矿不同磨矿细度磁铁矿的解离度分析结果
Table 6. Analysis results of dissociation degree of magnetite with different grinding fineness in the second stage grinding
磨矿细度/% 磁铁矿/% 合计/% 单体 连生体 -0.074 mm 80 95.18 4.82 100.00 90 96.49 3.51 100.00 95 97.41 2.59 100.00 -0.044 mm 90 98.25 1.75 100.00 95 98.82 1.18 100.00 -0.037 mm 95 99.12 0.88 100.00 -
[1] 杨耀辉, 惠博, 严伟平, 等. 攀西微细粒钛铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
[2] 彭明生, 刘晓文, 刘羽. 工艺矿物学近十年的主要进展[J]. 矿物岩石地球化学通报, 2012, 31(3):210-217. doi: 10.3969/j.issn.1007-2802.2012.03.003
PENG M S, LIU X W, LIU Y. Major advances in technological mineralogy in the past decade[J]. Geochemistry Of Mineral Rocks, 2012, 31(3):210-217. doi: 10.3969/j.issn.1007-2802.2012.03.003
[3] 薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the Taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
[4] 马驰, 于岸洲, 张颖新, 等. 国外某铁锰矿工艺矿物学研究[J]. 矿产综合利用, 2020(1):107-111. doi: 10.3969/j.issn.1000-6532.2020.01.022
MA C, YU A Z, ZHANG Y X, et al. Study on process mineralogy of a foreign iron-manganese ore[J]. Multipurpose Utilization of Mineral Resources, 2020(1):107-111. doi: 10.3969/j.issn.1000-6532.2020.01.022
[5] 肖仪武, 方明山, 付强. 工艺矿物学研究的新技术与新理念[J]. 矿产保护与利用, 2018(3):49-54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009
XIAO Y W, FANG M S, FU Q. New technology and new idea of technological mineralogy research[J]. Protection and Utilization of Mineral Resources, 2018(3):49-54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009
[6] 王玲, 赵战锋. 工艺矿物学在地质冶金学中的应用及问题[J]. 矿产综合利用, 2020(2):37-43. doi: 10.3969/j.issn.1000-6532.2020.02.006
WANG L, ZHAO Z F. Application and difficulties of process mineralogy in geometallurgy modeling[J]. Multipurpose Utilization of Mineral Resources, 2020(2):37-43. doi: 10.3969/j.issn.1000-6532.2020.02.006
-