Research on Flotation Process of a Low Grade Molybdenum Ore in Qinghai Province
-
摘要:
青海省某低品位浸染型辉钼矿矿石,原矿钼品位为0.21%,铅品位为0.0049%,针对该低品位钼矿石开展了工艺矿物学研究以及可选性条件实验。采用柴油作钼的捕收剂、水玻璃作为调整剂,经过了一段粗选五段精选二段扫选的浮选工艺流程,所得的钼精矿经检测Pb含量为0.98%,影响其销售价格。针对该含铅超标的钼精矿采用了再磨脱药以及添加抑制铅的抑制剂磷诺克斯相结合的工艺流程,钼精矿的含铅量从0.98%降低至0.074%,钼品位由原矿的0.21%提高到53.95%,钼回收率达到了90.18%,实现了钼的有效回收。
Abstract:The molybdenum grade is 0.21% and the lead grade is 0.0049% in a low grade disseminated molybdenite ore in Qinghai Province. Process mineralogy research and beneficiability condition test were carried out for the low grade molybdenum ore. Diesel oil was used as collector and sodium silicate was used as regulator. After flotation process of one stage roughing, five stages cleaning and two stages scavenging, the Pb content of molybdenum concentrate obtained was 0.98%. The sale price of molybdenum mines was affected due to exceed standards lead levels. In order to reduce the lead content of the molybdenum concentrate, the process of regrinding and detoxification combined with the addition of phosphoknox, an inhibitor of inhibiting lead, was adopted for the molybdenum concentrate containing excessive lead. Finally, the lead content of molybdenum concentrate was reduced from 0.98% to 0.074%, molybdenum grade is increased from 0.21% to 53.95%, molybdenum recovery reached 90.18%, realizing effective recovery of molybdenum.
-
Key words:
- Molybdenum concentrate /
- Flotation /
- Lead molybdenum separation
-
-
表 1 原矿主要化学元素分析结果/%
Table 1. Chemical elements analysis results of raw ore
Mo S WO3 K2O Na2O CaO MgO Al2O3 SiO2 Fe2O3 Ti As 0.21 0.16 0.011 4.35 2.59 1.48 0.47 11.91 73.42 2.36 0.14 0.020 *单位为:g/t。 表 2 矿石钼物相分析结果
Table 2. Results of molybdenum phase analysis
名称 硫化钼 氧化钼 合计 含量/% 0.18 0.018 0.198 分布率/% 90.46 9.54 100.00 表 3 矿石矿物组成及含量/%
Table 3. Mineral composition and contents of ore
黑云母 钾长石 斜长石 石英 绢云母 绿泥石 3.75 23.4 29.1 38.6 1.63 1.11 黄铁矿 辉钼矿 钼华 磁铁矿 褐铁矿 其他 0.49 0.31 0.11 1.15 0.25 0.10 表 4 钼精矿产品化验分析结果/%
Table 4. Analysis results of molybdenum concentrate products
Mo Cu P As Sn SiO2 CaO WO3 Pb Bi Ag* Au* 49.76 0.038 0.01 0.0011 0.0003 7.10 0.71 1.90 0.982 0.057 1210 0.032 *单位为:g/t。 表 5 闭路实验结果/%
Table 5. Results of the closed-circuit test
Mo Cu P As Sn SiO2 CaO WO3 Pb Bi Ag Au 53.95 0.042 0.011 0.0010 0.0002 4.10 0.50 1.80 0.074 0.023 130 0.04 -
[1] 张亮, 杨卉芃, 冯安生, 等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16.
ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16.
[2] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009
ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009
[3] 王国彬, 蓝卓越, 赵清平, 等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用, 2021(3):140-148.
WANG G B, LAN Z Y, ZHAO Q P, et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.
[4] 马高峰, 雷宁, 王子川, 等. 高碳钼精矿碳钼浮选分离工艺研究[J]. 中国钼业, 2020, 44(1):6-10. doi: 10.13384/j.cnki.cmi.1006-2602.2020.01.002
MA G F, LEI N, WANG Z C, et al. Carbon-molybdenum flotation separation process of high carbon molybdenum concentrate[J]. China Molybdenum Industry, 2020, 44(1):6-10. doi: 10.13384/j.cnki.cmi.1006-2602.2020.01.002
[5] 赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001
ZHAO K L, YAN W, LIU F Y, et al. Study on high efficiency separation of chalcopyrite from a fine disseminate molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001
[6] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺[J]. 矿产综合利用, 2019(5):32-36+16. doi: 10.3969/j.issn.1000-6532.2019.05.007
JIAN S, HU Y H, SUN W. Mineral processing technology of a low-grade copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36+16. doi: 10.3969/j.issn.1000-6532.2019.05.007
[7] 王森. 洛南细碧岩型难选钼矿分离技术研究[D]. 陕西: 西安建筑科技大学, 2009.
WANG S. Study on separation technology of Luonan biite-type refractory molybdenum ore [D]. Shaanxi: Xi 'an University of Architecture and Technology, 2009.
[8] 吴桂叶, 徐连华, 王金玲等. 某铜钼混合精矿分离铜抑制剂筛选[J]. 金属矿山, 2015(1):50-53.
WU G Y, XU L H, WANG J L, et al. Selection of a copper inhibitor for separation of copper-molybdenum mixed concentrate[J]. Metal Mine, 2015(1):50-53.
[9] 徐引行, 万宏民. 汝阳某钼矿石钼的选矿试验研究[J]. 有色金属(选矿部分), 2009(4):8-11.
XU Y X, WAN H M. Beneficiation test to obtain high-grade molybdenum concentrate using molybdenum ore from a mine in Ruyang[J]. Nonferrous Metals(Mieral Processing Section), 2009(4):8-11.
[10] 骆任, 孙伟, 赵玉卿等. 黑龙江某钼精矿降铅选矿试验研究[J]. 矿产综合利用, 2016(2):58-60. doi: 10.3969/j.issn.1000-6532.2016.02.013
LUO R, SUN W, ZHAO Y Q, et al. Experimental study on beneficiation of a molybdenum concentrate by reducing Pb[J]. Multipurpose Utilization of Mineral Resources, 2016(2):58-60. doi: 10.3969/j.issn.1000-6532.2016.02.013
[11] 杨凯志, 陈红兵, 胡真, 等. 广东某铜钼多金属硫化矿混合精矿中钼的高效分离[J]. 矿产综合利用, 2020(2):44-48,43. doi: 10.3969/j.issn.1000-6532.2020.02.007
YANG K Z, CHEN H B, HU Z, et al. Research on efficient separation Mo for Cu-Mo mixed concentrate from Guangdong copper-molybdenum polymetallic sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):44-48,43. doi: 10.3969/j.issn.1000-6532.2020.02.007
-