Analysis of Durability and Hydration Characteristics of Metakaolin Concrete
-
摘要:
为了得到不同偏高岭土掺量对混凝土物理、力学性能和水化特性的影响,开展了偏高岭土混凝土的基本物理力学实验和混凝土的水化性能实验。结果表明:适当掺加偏高岭土来代替混凝土水泥掺料,可以较好地提升混凝土的力学性能和工作性能。但是随着偏高岭土掺量的不断增大,混凝土内部的水泥含量会减少以及混凝土内部的化学结合水量减少。使得其水化放热量和放热速率均减小以及水化反应生成的氢氧化钙含量减少。通过结合偏高岭土水化后XRD图谱分析可知,在偏高岭土掺量为15%时钙矾石XRD图谱峰值最显著。这和前期得到混凝土力学性能达到较佳的偏高岭土掺量一致。
Abstract:In order to obtain the effects of different amounts of metakaolin on the physical, mechanical properties and hydration characteristics of concrete, basic physical and mechanical tests of metakaolin concrete and concrete hydration performance tests were carried out. The results show that the proper addition of metakaolin instead of concrete cement admixture can better improve the mechanical properties and working performance of concrete. However, with the increasing content of metakaolin, the cement content inside the concrete will decrease and the chemically bound water inside the concrete will decrease. So that the heat and rate of hydration are reduced, and the content of calcium hydroxide generated by the hydration reaction is reduced. By combining the XRD pattern analysis of metakaolin after hydration, it can be known that the peak value of the XRD pattern of ettringite is the most significant when the content of metakaolin is 15%. This is consistent with the content of metakaolin that is obtained in the early stage to achieve the best mechanical properties of concrete.
-
Key words:
- Chemically bound water /
- Hydration product /
- Hydration heat release rate /
- Heat release /
- XRD pattern
-
-
表 1 高岭土的化学成分/%
Table 1. Chemical composition and proportion of kaolin
SiO2 Al2O3 Fe2O3 CaO K2O 其他 56.38 36.84 2.36 2.12 0.62 1.68 -
[1] 宁波, 闫艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025
NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025
[2] 李秋超, 范颖芳, 陈昊. 新拌纳米偏高岭土水泥浆流变性[J]. 东南大学学报(自然科学版), 2021, 51(3):480-488.
LI Q C, FAN Y F, CHEN H. Rheology of freshly mixed nano-metakaolin cement slurry[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(3):480-488.
[3] 曾俊杰, 王胜年, 熊建波, 等. 偏高岭土对低热硅酸盐水泥水化性能的影响[J]. 混凝土, 2020(5):69-72. doi: 10.3969/j.issn.1002-3550.2020.05.018
ZENG J J, WANG S N, XIONG J B, et al. Effect of metakaolin on hydration performance of low-heat Portland cement[J]. Concrete, 2020(5):69-72. doi: 10.3969/j.issn.1002-3550.2020.05.018
[4] 宋银星, 马芹永. 超细矿渣粉-偏高岭土-水泥注浆材料性能实验与分析[J]. 中国科技论文, 2020, 15(3):360-365+372. doi: 10.3969/j.issn.2095-2783.2020.03.017
SONG Y X, MA Q Y. Experiment and analysis of performance of ultrafine slag powder-metakaolin-cement grouting material[J]. China Science and Technology Papers, 2020, 15(3):360-365+372. doi: 10.3969/j.issn.2095-2783.2020.03.017
[5] 王景霞, 何斌, 牛世伟, 等. 生石灰激发赤泥-粉煤灰协同水泥固化Cu~(2+)污染高岭土的电化学特性[J]. 科学技术与工程, 2021, 21(12):5054-5059. doi: 10.3969/j.issn.1671-1815.2021.12.044
WANG J X, HE B, NIU S W, et al. Electrochemical properties of quicklime-activated red mud-fly ash synergistic cement-solidified Cu~(2+) contaminated kaolin[J]. Science, Technology and Engineering, 2021, 21(12):5054-5059. doi: 10.3969/j.issn.1671-1815.2021.12.044
[6] 陶涛, 杨建明, 李涛, 等. 偏高岭土和粉煤灰对大流动性磷酸钾镁水泥抗盐冻性能的影响[J]. 混凝土, 2021(04):87-90+95. doi: 10.3969/j.issn.1002-3550.2021.04.021
TAO T, YANG J M, LI T, et al. Effects of metakaolin and fly ash on salt-freezing resistance of high fluidity potassium magnesium phosphate cement[J]. Concrete, 2021(04):87-90+95. doi: 10.3969/j.issn.1002-3550.2021.04.021
[7] 王晓敏, 郑建岚, 朱艺婷. 粉煤灰颗粒特性对再生混凝土水化性质的影响[J]. 福州大学学报(自然科学版), 2021, 49(2):238-244.
WANG X M, ZHENG J L, ZHU Y T. Effect of fly ash particle characteristics on hydration properties of recycled concrete[J]. Journal of Fuzhou University(Natural Science Edition), 2021, 49(2):238-244.
[8] 冯庆革, 黄小玲, 罗学波, 等. 含氯盐及不含氯盐混凝土浆体的水化进程研究[J]. 广西大学学报(自然科学版), 2011, 36(4):683-688. doi: 10.13624/j.cnki.issn.1001-7445.2011.04.002
FENG Q G, HUANG X L, LUO X B, et al. Research on hydration process of chloride-containing and chloride-free concrete paste[J]. Journal of Guangxi University(Natural Science Edition), 2011, 36(4):683-688. doi: 10.13624/j.cnki.issn.1001-7445.2011.04.002
[9] 谢子茜, 刘桂宾, 张天宇, 等. 钾基碱性电解水对粉煤灰混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(3):943-950+969. doi: 10.16552/j.cnki.issn1001-1625.2021.03.026
XIE Z X, LIU G B, ZHANG T Y, et al. Effects of potassium-based alkaline electrolyzed water on properties of fly ash concrete[J]. Silicate Bulletin, 2021, 40(3):943-950+969. doi: 10.16552/j.cnki.issn1001-1625.2021.03.026
[10] 刘盼, 常成功, 刘秀泉, 等. 粉煤灰掺量对氯氧镁水泥混凝土物理力学性能的影响[J]. 硅酸盐通报, 2021, 40(5):1564-1572. doi: 10.16552/j.cnki.issn1001-1625.2021.05.014
LIU P, CHANG C G, LIU X Q, et al. Effect of fly ash content on physical and mechanical properties of magnesium oxychloride cement concrete[J]. Silicate Bulletin, 2021, 40(5):1564-1572. doi: 10.16552/j.cnki.issn1001-1625.2021.05.014
[11] 王靖, 王万金, 夏义兵, 等. 超细粉煤灰对混凝土强度及水化产物的影响[J]. 混凝土与水泥制品, 2016(12):24-26. doi: 10.3969/j.issn.1000-4637.2016.12.005
WANG J, WANG W J, XIA Y B, et al. Effects of ultra-fine fly ash on concrete strength and hydration products[J]. Concrete and Cement Products, 2016(12):24-26. doi: 10.3969/j.issn.1000-4637.2016.12.005
-