Reasearch on Optimum Mix Proportion Waste Rock-tailings Backfill Materials Based on Orthogonal Tests
-
摘要:
为改善磷矿山固废物的赋存问题,采用正交实验法,开展了废石、磷尾砂充填配比研究。基于SPSS多元非线性回归分析,研究充填体单轴抗压强度、泌水率及坍落度的影响因素,确定较优配比并开展半工业实验进行可靠性分析。实验结果表明:当废石尾砂比为6∶4时,充填性能达到较优;当充填料浆的质量浓度为78%、水泥掺量为280 kg/m3时,充填体泌水率达到较优并满足高流态的泵送要求,符合矿山充填工艺要求。
Abstract:To improve the problem of solid waste in phosphate mines, the research on the optimum mix ratio for cemented filling experiment of waste rock and phosphorus tailings was studied by orthogonal tests. Research on the influencing factors of uniaxial compressive strength, bleeding rate and slump constant for the filling body which was based on SPSS multivariate nonlinear regression analysis. Determining the optimal ratio and carry out semi-industrial tests to verify reliability. Results show that the filling to achieve optimal performance when the waste rock and tailings ratio is 6∶4, mass concentration is 78% and cement ratio is 280 kg/m3 for the filling body, the bleeding rate of filling bodyreaches the optimum and meets the pumping requirements of high fluidity, which meets the requirements of the mine filling process.
-
Key words:
- Waste rock /
- Phosphorus tailings /
- Filling strength /
- Bleeding rate /
- Slump constant
-
-
表 1 尾砂矿物组分结果/%
Table 1. Main chemical composition of tailings
P2O5 MgO CaO K2O Na2O SiO2 Fe2O3 其他 14.48 6.76 37.68 1.94 10.18 16.37 1.01 11.58 表 2 废石、尾砂基本物理参数
Table 2. Basic physical parameters of waste rock and taliings
样品 堆积密度/(t·m-3) 密度/(t·m-3) 密实度/% 孔隙率/% 废石 1.750 2.754 63.55 36.45 尾砂 1.328 2.841 46.77 53.23 表 3 因素与水平
Table 3. Factors and levels
水平 因素 A B C 1 72 5:5 220 2 75 6:4 250 3 78 7:3 280 表 4 废石尾砂充填实验正交设计
Table 4. Orthogonal design of filling test of waste rock and tailings
实验组号 实验方案 A B C 1 A1B1C1 72 5∶5 220 2 A1B2C2 72 6∶4 250 3 A1B3C3 72 7∶3 280 4 A2B1C2 75 5∶5 250 5 A2B2C3 75 6∶4 280 6 A2B3C1 75 7∶3 220 7 A3B1C3 78 5∶5 280 8 A3B2C1 78 6∶4 220 9 A3B3C2 78 7∶3 250 表 5 正交实验结果
Table 5. Orthogonal experiment results
实验方案 单轴抗压强度 泌水率/% 塌落度/cm 7 d 28 d A1B1C1 1.52 3.05 5.13 29.6 A1B2C2 2.47 4.77 4.68 29.1 A1B3C3 2.79 5.37 3.56 29.8 A2B1C2 2.22 4.32 1.25 28.9 A2B2C3 3.58 6.61 2.37 28.4 A2B3C1 2.22 4.38 5.14 29.2 A3B1C3 3.27 6.14 0.54 26.7 A3B2C1 2.88 5.50 1.28 28.2 A3B3C2 3.31 6.33 1.59 27.7 表 6 7 d、28 d平均抗压强度结果分析
Table 6. Analysis of 7 d and 28 d average compressive strength
指标 7 d平均抗压强度/MPa 7 d平均抗压强度/MPa A B C A B C k1 2.26 2.34 2.21 4.40 4.50 4.31 k2 2.67 2.98 2.67 5.10 5.63 5.14 k3 3.15 2.77 3.21 5.99 5.36 6.04 极差R 0.89 0.64 1 1.59 0.86 1.73 表 7 平均泌水率结果分析
Table 7. Analysis of average bleeding rate
指标 A B C k1 4.46 2.31 3.85 k2 2.92 2.78 2.51 k3 1.14 3.64 2.25 极差R 3.32 1.33 1.60 表 8 平均坍落度结果分析
Table 8. Analysis of average slump constant results
指标 A B C k1 29.5 28.4 29 k2 28.8 28.6 28.6 k3 27.5 28.9 28.3 极差R 2 0.5 0.7 表 9 稠度等级与坍落度范围
Table 9. Consistency grade and slump range
稠度等级 坍落度/cm 状态 S1 1~4 干硬 S2 5~9 塑性 S3 10~15 半流态 S4 16~21 流态 S5 >21 高流态 表 10 回归方程统计学参数
Table 10. Statistical parameters of regression equation
R2 F R7 d 0.984 370 R28 d 0.988 370 泌水率 0.945 150 坍落度 0.931 78 表 11 半工业实验
Table 11. Pilot-plant test
实验号 废石:尾砂 料浆浓度/% 水泥掺量/(kg·m-3) 倍线 1 5∶5 78 280 4 2 5∶5 78 280 5 3 5∶5 78 280 6 表 12 半工业实验结果
Table 12. Results of pilot-plant test
实验号 流速/(m·s-1) 7 d充填强度/MPa 平整度/(°) 1 2.83 1.8 0.54 2 2.48 1.8 0.62 3 2.21 1.9 0.51 -
[1] 赵鑫, 蔡慢弟, 董倩倩, 等. 中低品位磷矿资源高效利用机制与途径研究进展[J]. 植物营养与肥料学报, 2018, 24(4):1121-1130. doi: 10.11674/zwyf.17418
ZHAO X, CAI M D, DONG Q Q, et al. Advances of mechanisms andtechnology pathway of efficient utilizationof medium—low grade phosphate rock resources[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4):1121-1130. doi: 10.11674/zwyf.17418
[2] 张汉泉, 周峰, 许鑫, 等. 中国磷矿开发利用现状[J]. 武汉工程大学学报, 2020, 42(2):159-164.
ZHANG H Q, ZHOU F, XU X, et al. Development and utilization of phosphate ore in China[J]. Journal of Wuhan Institute of Technology, 2020, 42(2):159-164.
[3] 《中国矿产资源报告2019》发布[J]. 地质装备, 2019, 20(6): 3-4.
《China Mineral Resources Report 2019》 released[J]. Equipment for Geotechnical Engineering, 2019, 20(6): 3-4.
[4] 王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15.
WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15.
[5] 黄贵臣, 谢冬冬, 韩呈, 等. 基于正交试验的赤铁矿浮选试验研究[J]. 矿产综合利用, 2019(4):63-67. doi: 10.3969/j.issn.1000-6532.2019.04.013
HUANG G C, XIE D D, HAN C, et al. Experimental study on flotation of hematite based on orthogonal test[J]. Multipurpose Utilization of Mineral Resources, 2019(4):63-67. doi: 10.3969/j.issn.1000-6532.2019.04.013
[6] 曹晓凡, 唐亦川, 邓念东, 等. 基于重复正交试验的风积砂膏体充填材料配比[J]. 煤矿安全, 2020, 51(1):1-6.
CAO X F, TANG Y C, DENG N D, et al. Aeolian sand paste filling material ratio based on repeated orthogonal Test[J]. Safety in Coal Mines, 2020, 51(1):1-6.
[7] 李阳阳, 陈得信, 杨晓炳, 等. 基于BP神经网络模型充填体粉煤灰基胶凝材料早强激发剂优化研究[J]. 化工矿物与加工, 2018, 47(12):44-49.
LI Y Y, CHEN D X, YANG X B, et al. Optimization of early strength activator of fly ash based on BP neural network model[J]. Industrial Minerals & Processing, 2018, 47(12):44-49.
[8] 赵才智. 煤矿新型膏体充填材料性能及其应用研究[D]. 徐州: 中国矿业大学, 2008.
ZHAO C Z. Study on coal mine new paste filling material properties and its application [D]. Xuzhou: China University of Mining and Technology, 2008.
[9] 巴蕾, 韦寒波, 温震江, 等. 废石-铜渣尾砂混合骨料配比优化试验[J]. 矿业研究与开发, 2020, 40(2):31-37.
BA L, WEI H B, WEN Z J, et al. Optimization proportioning test on mixed aggregate of waste rock and copper slag tailings[J]. Mining Research and Development, 2020, 40(2):31-37.
[10] 易先良, 李松, 倪帮荣, 等. 废石胶结充填物料优化配比的工业试验[J]. 化工矿物与加工, 2014, 43(4):37-39.
YI X L, LIU S, NI B R, et al. Pilot tests on optimal ratio of waste rock cemented filling materials[J]. Industrial Minerals & Processing, 2014, 43(4):37-39.
-