Research on Orthogonal Test of Mixture Ratio of Gold Tailings Recycled Concrete
-
摘要:
为缓解天然砂石资源短缺,采用正交实验对金尾矿砂再生混凝土进行力学研究,选取水灰比、金尾矿砂取代率、再生粗骨料取代率和粉煤灰掺量四个影响因素,得到了金尾矿砂再生混凝土抗压、抗拉强度两种性能指标,并基于力学性能进行了配比优化组合研究。结果表明:水灰比、粉煤灰掺量对两种评价指标影响显著,其次是金尾矿砂取代率,而二次破碎的再生粗骨料对二者影响较小。综合考虑配制金尾矿砂再生混凝土的较佳因素水平方案为水灰比0.45、金尾矿砂取代率30%、再生粗骨料取代率30%、粉煤灰掺量10%。通过对较佳配比浇筑的金尾矿砂再生混凝土与普通混凝土、再生混凝土的两种强度对比和微观分析可知,金尾矿砂应用于再生混凝土中是可行的。
Abstract:In order to alleviate the shortage of natural sand and gravel resources, an orthogonal test was used to study the mechanics of recycled concrete from gold tailings. Four influencing factors of water-cement ratio, gold tailing sand substitution rate, recycled coarse aggregate substitution rate and fly ash content were selected, and two performance indicators of compressive strength and tensile strength of gold tailing sand recycled concrete were obtained. The performance was also researched on the ratio optimization combination. Results showed that the water-cement ratio and the content of fly ash have significant effects on the two evaluation indexes, followed by the replacement rate of gold tailing sand, while the reclaimed coarse aggregate of secondary crushing has little effect on the two indexes. The optimal factor level scheme for the preparation of recycled concrete with gold tailing sand is the water-cement ratio of 0.45, the replacement rate of gold tailing sand, the replacement rate of recycled coarse aggregate of 30% and the content of fly ash of 10%. By comparing the strength of recycled concrete with ordinary concrete and recycled concrete with the best ratio of gold tailing sand, it can be seen that it is feasible to use gold tailing sand in recycled concrete.
-
Key words:
- Recycled concrete /
- Gold tailing sand /
- Orthogonal test /
- Mechanical property /
- Ratio optimization
-
-
表 1 金尾矿砂主要化学成分/%
Table 1. Main chemical composition of gold tailings sand
SiO2 Al2O3 CaO Fe2O3 MgO Na2O TiO2 K2O 52.65 17.55 9.84 9.04 4.13 3.32 1.48 1.47 表 2 金尾矿砂物化特性检测结果
Table 2. Test results of physical and chemical properties of gold tailings sand
指标 表观密度/(kg·m-3) 吸水率/% 云母含量/% 轻物质含量/% 氯离子含量/% 硫化物含量/% 有机物含量/% 测量值 2789.6 2.28 0.3 0.5 0.01 0.24 合格 规范标准 - - <2.0 <1.0 <0.06 <1.0 颜色不深于标准色 表 3 金尾矿砂放射性核素检测结果
Table 3. Radionuclide detection results of gold tailings sand
核素名称 比活度/
(Bq·kg)内照射指数
(IRa)外照射指数
(Ir)226Ra 1.8 0.0 0.1 232Th 6.7 40K 245.4 表 4 粗骨料的基本物理性质
Table 4. Basic physical properties of coarse aggregate
骨料类型 表观密度/
(kg·m-3)堆积密度/
(kg·m-3)吸水率/
%含水率/
%压碎指标/
%天然粗骨料 2659.6 1315.4 0.5 0.57 5.8 再生粗骨料 2510.2 1259.1 5.5 3.8 13.1 表 5 正交实验设计
Table 5. Orthogonal test design
水平 因素 水灰比A 金尾矿砂取
代率B/%再生粗骨料
取代率C/%粉煤灰掺量D/% 1 0.45 0 30 10 2 0.50 30 50 20 3 0.55 60 70 30 表 6 金尾矿砂再生混凝土材料配合比
Table 6. Mix ratio of gold tailings sand recycled concrete materials
编号 组别 材料用量/(kg·m-3) 水泥 水 天然砂 天然粗骨料 再生粗骨料 金尾矿砂 粉煤灰 Z-1 A1B1C1D1 390 201.2 637.8 793.9 340 0 43.3 Z-2 A1B2C2D2 346.6 204.8 446.5 567 566.9 191.3 86.7 Z-3 A1B3C3D3 303.3 209.1 255.1 340 793.9 382.7 130 Z-4 A2B1C2D3 273 204.8 653.4 580.8 580.8 0 117 Z-5 A2B2C3D1 351 209.1 457.4 348.5 813.1 196 39 Z-6 A2B3C1D2 312 201.2 261.4 813.1 348.5 392 78 Z-7 A3B1C3D2 283.6 209.1 666.2 355.3 829 0 70.9 Z-8 A3B2C1D3 248.1 201.2 466.3 829 355.3 199.9 106.4 Z-9 A3B3C2D1 319 204.8 266.5 592.1 592.2 399.7 35.5 表 7 金尾矿砂再生混凝土正交实验强度值
Table 7. Orthogonal test strength value of recycled concrete with gold tailings sand
编号 组别 影响因素 实验结果 水灰比A 金尾矿砂取代率B/% 再生粗骨料取代率C/% 粉煤灰掺量D/% 28 d抗压强度/MPa 28 d劈裂抗拉强度/MPa Z-1 A1B1C1D1 1(0.45) 1(0) 1(30) 1(10) 38.20 3.33 Z-2 A1B2C2D2 1(0.45) 2(30) 2(50) 2(20) 37.07 3.21 Z-3 A1B3C3D3 1(0.45) 3(60) 3(70) 3(30) 33.92 2.66 Z-4 A2B1C2D3 2(0.50) 1(0) 2(50) 3(30) 33.80 2.6 Z-5 A2B2C3D1 2(0.50) 2(30) 3(70) 1(10) 37.32 3.14 Z-6 A2B3C1D2 2(0.50) 3(60) 1(30) 2(20) 35.53 2.68 Z-7 A3B1C3D2 3(0.55) 1(0) 3(70) 2(20) 30.27 2.35 Z-8 A3B2C1D3 3(0.55) 2(30) 1(30) 3(30) 30.01 2.42 Z-9 A3B3C2D1 3(0.55) 3(60) 2(50) 1(10) 31.79 2.35 表 8 实验结果极差分析结果
Table 8. Range analysis of test results
水平 立方体抗压强度 劈裂抗拉强度 A B C D A B C D K1 109.2 102.2 103.7 107.3 9.2 8.3 8.4 8.8 K2 106.6 104.4 102.6 102.9 8.4 8.8 8.2 8.2 K3 92 101.2 101.5 97.7 7.1 7.7 8.1 7.7 极差R 17.2 3.2 2.2 9.6 2.1 1.1 0.3 1.1 表 9 金尾矿砂再生混凝土方差分析结果
Table 9. Variance analysis results of gold tailings sand recycled concrete
检验指标 方差来源 平方和 自由度 均方差 F 显著性 立方体抗压强度 A 170.734 2 85.367 356.930 *** B 5.213 2 2.607 10.898 * C 2.473 2 1.236 5.169 * D 46.065 2 23.032 96.302 ** 误差 4.305 18 0.236 总计 228.79 26 劈裂抗拉强度 A 2.208 2 1.104 49.761 *** B 0.585 2 0.292 13.179 ** C 0.054 2 0.027 1.221 * D 0.650 2 0.325 14.644 ** 误差 0.399 18 0.022 总计 3.896 26 注:“*”为显著性影响程度等级 表 10 金尾矿砂再生混凝土优化方案及结果
Table 10. Optimization scheme and results of gold tailings sand recycled concrete
混凝土类型 水灰比 金尾矿砂
取代率/%再生粗骨料
取代率/%粉煤灰
掺量/%28 d立方体抗压
强度/MPa28 d劈裂抗拉
强度/MPa普通混凝土 0.45 0 0 0 41.32 3.10 再生混凝土 0.45 0 30 10 38.20 2.83 金尾矿砂再生混凝土 0.45 30 30 10 42.89 3.57 表 11 金尾矿砂再生混凝土化学成分/%
Table 11. Chemical composition of recycled concrete from gold tailings sand
SiO2 CaO Al2O3 Fe2O3 MgO K2O SO3 Na2O TiO2 38.56 31.73 12.52 6.63 3.39 2.17 1.71 1.38 0.84 -
[1] 孙晓刚, 王海龙, 邢军, 等. TiO2对黄金尾砂微晶泡沫玻璃非等温析晶活化能的影响[J]. 矿产综合利用, 2021(1):151-156. doi: 10.3969/j.issn.1000-6532.2021.01.026
SUN X G, WANG H L, XING J, et al. Effect of TiO2 on crystallization activation energy of gold tailings microcrystalline foam glass[J]. Multipurpose Utilization of Mineral Resources, 2021(1):151-156. doi: 10.3969/j.issn.1000-6532.2021.01.026
[2] 王海军, 王伊杰, 李文超, 等. 《全国矿产资源节约与综合利用报告(2019)》[J]. 中国国土资源经济, 2020, 33(2):2.
WANG H J, WANG Y J, LI W C, et al. "National mineral resources conservation and comprehensive utilization report (2019)"[J]. China Land and Resources Economics, 2020, 33(2):2.
[3] 汪振双, 冉春梅. 中国建筑垃圾排放量与行业经济增长脱钩关系时空演化分析[J]. 工程管理学报, 2020, 34(3):39-44. doi: 10.13991/j.cnki.jem.2020.03.008
WANG Z S, RAN C M. Spatiotemporal evolution analysis of the decoupling relationship between China's construction waste discharge and industry economic growth[J]. Journal of Engineering Management, 2020, 34(3):39-44. doi: 10.13991/j.cnki.jem.2020.03.008
[4] 罗立群, 张晓雪, 林永峰, 等. 江西金尾矿资源的性质与绢云母提取研究[J]. 矿产综合利用, 2021(3):1-8. doi: 10.3969/j.issn.1000-6532.2021.03.001
LUO L Q, ZHANG X X, LIN Y F, et al. Properties of gold tailing and sericite separation from gold tailing in Jiangxi province[J]. Multipurpose Utilization of Mineral Resources, 2021(3):1-8. doi: 10.3969/j.issn.1000-6532.2021.03.001
[5] 郭远新, 李秋义, 岳公冰, 等. 考虑粗骨料品质和取代率的再生混凝土抗压强度计算[J]. 建筑结构学报, 2018, 39(4):153-159.
GUO Y X, LI Q Y, YUE G B, et al. Calculation of compressive strength of recycled concrete considering coarse aggregate quality and replacement rate[J]. Journal of Building Structures, 2018, 39(4):153-159.
[6] 马昆林, 黄新宇, 胡明文, 等. 砖混再生粗骨料混凝土力学性能及工程应用研究[J]. 硅酸盐通报, 2020, 39(8):2600-2607.
MA K L, HUANG X Y, HU M W, et al. Research on mechanical properties and engineering application of brick-concrete recycled coarse aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8):2600-2607.
[7] 石宵爽, 王清远, 邱慈长, 等. 不同再生骨料取代率的再生混凝土性能实验研究[J]. 四川大学学报(工程科学版), 2010, 42:170-176.
SHI X S, WANG Q Y, QIU C C, et al. Experimental study on the performance of recycled concrete with different recycled aggregate replacement rates[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42:170-176.
[8] 甘福, 周脉席, 濮琦. 再生粗骨料及再生混凝土性能研究进展[J]. 混凝土与水泥制品, 2018(9):102-107. doi: 10.3969/j.issn.1000-4637.2018.09.024
GAN F, ZHOU M X, PU Q. Research progress on properties of recycled coarse aggregate and recycled concrete[J]. Concrete and Cement Products, 2018(9):102-107. doi: 10.3969/j.issn.1000-4637.2018.09.024
-