-
摘要:
金属离子在金红石的浮选过程扮演着重要角色,主要分为活化和抑制,活化离子有Pb2+、Bi3+和Cu2+,抑制离子有Al3+、Fe3+,其中的作用机理表现出明显不同。本文综述了近年来金红石常用的浮选捕收剂,重点介绍了金红石浮选中活化金属离子Pb2+、Bi3+、Cu2+和抑制金属离子Al3+、Fe3+对其浮选的影响及作用机理,为了解金红石浮选中常见金属离子影响及作用机理提供参考。
Abstract:Metal ions play an important role in rutile flotation, which can be divided into activation and inhibition. The activation ions include Pb2+, Bi3+ and Cu2+, and the inhibition ions include Al3+ and Fe3+. Their mechanism of action is obviously different. In this paper, the commonly used flotation collectors of rutile in recent years are summarized, and the influence and action mechanism of activation ions Pb2+, Bi3+, Cu2+ and inhibition ions Al3+, Fe3+ on rutile flotation are mainly introduced, so as to provide reference for understanding the influence and action mechanism of common metal ions in rutile flotation.
-
Key words:
- Rutile /
- Metal ions /
- Activation /
- Inhibition /
- Flotation
-
-
表 1 金属离子的活化和抑制作用机理
Table 1. Mechanism of activation and inhibition of metal ions
作用 离子 作用机理 活化 Pb2+ 1. Pb(OH)+、Pb(OH)2(s)与 Ti-OH生成Ti-O-Pb+,增加活化位点
2. Pb2+与BHA生成Pb-BHA复合物,大量吸附金红石,活化浮选Bi3+ Bi3+占据原始Ca2+的位阻位置生成 (Bi(OH)n+(3-n)),进而与Ti-OH发生反成表面络合物Ti-O-Bi2+,增加金红石表面的活化位点 Cu2+ Cu2+与Fe2+反应生成Fe3+和Cu+,随后Cu(II)和Cu(I)与捕收剂HPA[P3+] 反应生成Cu(I)HPA[P3+]和Cu+HPA[P3+],HPA疏水基朝外,从而活化浮选 Al3+ 1. Al(OH)3沉淀覆盖在金红石表面,阻止捕收剂的作用
2. Al(OH)3沉淀物在金红石表面架桥形成Ti-O-Al键,掩盖活化位点抑制 Fe3+ 1. Fe(OH)3沉淀物物理吸附在金红石表面,导致其表面亲水
2. Fe3+离子与捕收剂形成络合物,消耗捕收剂 -
[1] 常田仓, 章晓林, 赵文迪, 等. 金红石选矿技术研究综述[J]. 矿产保护与利用, 2019(5):167-173. CHANG T C, ZHANG X L, ZHAO W D, et al. Summary of research on rutile beneficiation technology[J]. Conservation and Utilization of Mineral Resources, 2019(5):167-173.
[2] 刘明宝, 周春生, 张国春, 等. 用于从金红石重选中矿中浮选回收金红石的调整剂组合[P]. 中国: CN109647629B, 2020-10-30.
LIU M B, ZHOU C S, ZHANG G C, et al. A combination of modifiers used for flotation recovery of rutile from rutile reconstituted ore[P]. Shaanxi Province: CN109647629B, 2020-10-30.
[3] 李城, 王伟之. 钒钛磁铁矿中钛的柱机联合全浮工艺试验研究[J]. 矿产综合利用, 2019(3):40-43. LI C, WANG W Z. Experimental research on column-cell integration full flotation technology of titanium in vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):40-43. doi: 10.3969/j.issn.1000-6532.2019.03.009
[4] 孙晓华, 霸慧文, 赵玉卿, 等. 榴辉岩型金红石矿综合利用途径研究[J]. 化工矿物与加工, 2016(8):37-39. SUN X H, BA H W, ZHAO Y Q, et al. Research on comprehensive utilization ways of eclogite-type rutile mine[J]. Industrial Minerals and Processing, 2016(8):37-39.
[5] 唐勇, 明崇伦, 周高明, 等. 低品位天然金红石选矿提质新工艺研究[J]. 铁合金, 2020, 51(1):18-24. TANG Y, MING C L, ZHOU G M, et al. Research on the new technology of low-grade natural rutile beneficiation and quality improvement[J]. Ferroalloy, 2020, 51(1):18-24.
[6] 孙康. 某金红石矿选矿试验研究[J]. 矿冶, 2017(1):29-31+41. SUN K. Experimental research on beneficiation of a rutile mine[J]. Mining and Metallurgy, 2017(1):29-31+41. doi: 10.3969/j.issn.1005-7854.2017.01.007
[7] 钟金根, 陈超, 董文, 等. 一种中高品位金红石提质方法[P]. 中国: CN111871597A, 2020-11-03.
ZHONG J G, CHEN C, DONG W, et al. A method for improving the quality of medium and high grade rutile [P]. Hainan Province: CN111871597A, 2020-11-03.
[8] 高利坤, 陈云. 陕西某金红石矿反浮选试验研究[J]. 金属矿山, 2009(5):88-91. GAO L K, CHEN Y. Experimental research on reverse flotation of a rutile mine in Shaanxi[J]. Metal Mine, 2009(5):88-91. doi: 10.3321/j.issn:1001-1250.2009.05.023
[9] CHENG H W, LIU C M, GUO Z X, FENG A S, WEI M, LV Z H, WU D Y, ZHAO D K. Electrokinetic and flotation behavior of rutile in the presence of lead ions and aluminium ions[J]. PHysicochemical Problems of Mineral Processing, 2019, 55(2):458-466.
[10] 岳铁兵. 细粒金红石的浮选分离研究[D]. 沈阳: 东北大学, 2006.
YUE T B. Study on flotation separation of fine-grained rutile[D]. Shenyang: Northeastern University, 2006.
[11] 华中宝, 童雄, 谢贤, 等. 金红石浮选药剂研究进展[J]. 金属矿山, 2018(9):28-32. HUA Z B, TONG X, XIE X, et al. Research progress of rutile flotation reagents[J]. Metal Mine, 2018(9):28-32. doi: 10.19614/j.cnki.jsks.201809005
[12] 程宏伟, 董栋, 何兰军. 金红石选矿技术研究进展[J]. 矿产保护与利用, 2016(3):57-61. CHENG H W, DONG D, HE L J. Research progress of rutile beneficiation technology[J]. Conservation and Utilization of Mineral Resources, 2016(3):57-61. doi: 10.13779/j.cnki.issn1001-0076.2016.03.012
[13] 王军, 程宏伟, 赵红波, 等. 油酸钠作用下金红石的浮选行为及作用机理[J]. 中国有色金属学报, 2014, 24(3):820-825. WANG J, CHENG H W, ZHAO H B, et al. Flotation behavior and mechanism of rutile under the action of sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(3):820-825.
[14] 刘明宝, 郭万中, 印万忠. 油酸钠与胲铵类药剂协同浮选金红石的机理[J]. 化工进展, 2020, 39(8):3362-3370. LIU M B, GUO W Z, YIN W Z. The mechanism of synergistic flotation of rutile by sodium oleate and ammonium carbamate[J]. Progress in Chemical Industry, 2020, 39(8):3362-3370.
[15] 崔林, 刘均彪. 金红石和石榴石浮选分离的研究[J]. 化工矿山技术, 1986(5):32-33. CUI L, LIU J B. Research on flotation separation of rutile and garnet[J]. Chemical Mining Technology, 1986(5):32-33.
[16] 张德文, 黄发兰, 唐远. 甲苯胂酸对金红石浮选行为的影响及机理研究[J]. 有色金属(选矿部分), 2018(4):89-94. ZHANG D W, HUANG F L, TANG Y. Study on the effect of toluene arsenic acid on the flotation behavior of rutile and its mechanism[J]. Nonferrous Metals (Mineral Processing Section), 2018(4):89-94.
[17] 李晔, 许时. 提高胂酸对金红石浮选性能的研究[J]. 中国矿业, 1997(2):58-61. LI Y, XU S. Research on improving the flotation performance of arsenic acid for rutile[J]. China Mining Industry, 1997(2):58-61.
[18] XIAO W, CAO P, LIANG Q N, ZHANG E X, WANG J. Synergistic adsorption mechanism of styryl phosphoric acid and nonyl alcohol on the rutile surface and effects on flotation[J]. Canadian Metallurgical Quarterly, 2018:1-9.
[19] 彭勇军, 李晔, 许时. 苯乙烯膦酸与脂肪醇对金红石浮选的影响[J]. 中国有色金属学报, 1999, 9(2):358-362. PENG Y J, LI Y, XU S. Effect of styrene phosphonic acid and fatty alcohol on rutile flotation[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(2):358-362. doi: 10.3321/j.issn:1004-0609.1999.02.028
[20] 黄余, 曹沁波. 辛基羟肟酸对金红石的浮选行为[J]. 矿业研究与开发, 2019, 39(1):91-95. HUANG Y, CAO Q B. The flotation behavior of octyl hydroxamic acid on rutile[J]. Mining Research and Development, 2019, 39(1):91-95.
[21] PAVEZ O, PERES A. Effect of sodium metasilicate and sodium sulpHide on the floatability of monazite- zircon- rutile with oleate and hydroxamates[J]. Minerals Engineering, 1993, 6(1):69-78. doi: 10.1016/0892-6875(93)90164-I
[22] 贺智明, 董雍赓, 孙笈. 铅离子对水杨氧肟酸浮选金红石的活化作用研究[J]. 有色金属工程, 1994(4):43-48. HE Z M, DONG Y G, SUN J. Study on the activation of lead ions on the flotation of rutile by salicylic hydroxamic acid[J]. Nonferrous Metal Engineering, 1994(4):43-48.
[23] 高跃升, 高志勇, 孙伟. 金属离子对矿物浮选行为的影响及机理研究进展[J]. 中国有色金属学报, 2017, 27(4):859-868. GAO Y S, GAO Z Y, SUN W. The effect of metal ions on the flotation behavior of minerals and the research progress of its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4):859-868. doi: 10.19476/j.ysxb.1004.0609.2017.04.024
[24] XIAO W, ZHAO H B, QIN W Q, QIU G Z, WANG J. Adsorption Mechanism of Pb2+ Activator for the Flotation of Rutile[J]. Minerals, 2018, 8(7):266. doi: 10.3390/min8070266
[25] Sui C C, Brienne S, Xu Z, Finch J. Xanthate adsorption on Pbcontaminated pyrite, Int. J. Miner. Process. 49 (1997) 207-221.
[26] Basilio C, Kartio I, Yoon R H, Lead activation of sphalerite during galena flotation, Miner. Eng. 9 (1996) 869-879.
[27] Sui C, Brienne S, Rao S R, Xu Z, Finch J. Metal ion production and transfer between sulphide minerals, Miner. Eng. 8 (1995) 1523-1539.
[28] LI H Q, MU S X, WENG X Q, ZHAO Y L, SONG S X. Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface[J]. Colloids & Surfaces A PHysicochemical & Engineering Aspects, 2016, 506:431-437.
[29] YU X C, CAO Q B, ZOU H, PENG Q X. Activation Mechanism of Lead Ions in the Flotation of Rutile Using Amyl Xanthate as a Collector[J]. Mining, Metallurgy & Exploration, 2020:333-344.
[30] Yang N, Sun H. Biocoordination chemistry of bismuth: Recent advances. Coord. Chem. Rev. 2007 , 251, 2354–2366.
[31] XIAO W, CAO P, LIANG Q N, HUANG X T, LI K Y, ZHANG Y S, QIN W Q, QIU Q Z, WANG J. Adsorption behavior and mechanism of Bi(III) ions on rutile–water interface in the presence of nonyl hydroxamic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2):348-355. doi: 10.1016/S1003-6326(18)64668-0
[32] XIAO W, CAO P, LIANG Q N, PENG H, ZHAO H B, QIN W Q, QIU G Z, WANG J. The activation mechanism of Bi3+ ions to rutile flotation in a strong acidic environment[J]. Minerals, 2017, 7(7):113. doi: 10.3390/min7070113
[33] Agorhom E A, Skinner W, Zanin M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate[J]. Minerals Engineering, 2014, 57:36-42. doi: 10.1016/j.mineng.2013.12.010
[34] LI F X, ZHONG H, WANG S, LIU G Y. The activation mechanism of Cu(II) to ilmenite and subsequent flotation response to α-hydroxyoctyl pHospHinic acid[J]. Journal of Industrial and Engineering Chemistry, 2016:123-130.
[35] 王绍艳, 薛问亚. 用环烷酸作捕收剂硫酸铝作抑制剂浮选分离萤石和重晶石的机理研究[J]. 非金属矿, 1997(4):39-41. WANG S Y, XUE W Y. Study on the mechanism of flotation separation of fluorite and barite using naphthenic acid as collector aluminum sulfate as inhibitor[J]. Nonmetallic Minerals, 1997(4):39-41.
[36] CHEN Q, TIAN M M, KASOMO R M, LI H Q, ZHENG H F, SONG S X, LUO H H, HE D S. Depression effect of Al(Ⅲ) and Fe(Ⅲ) on rutile flotation using dodecylamine polyxyethylene ether as collector[J]. Colloids and Surfaces A PHysicochemical and Engineering Aspects, 2020:125269.
[37] 丁浩. 金红石与磷灰石浮选分离中硫酸铝的作用研究[J]. 化工矿物与加工, 1997(3):13-16. DING H. Research on the role of aluminum sulfate in the flotation separation of rutile and apatite[J]. Industrial Minerals and Processing, 1997(3):13-16.
[38] 欧乐明, 叶家笋, 曾维伟. 铁离子和亚铁离子对菱锌矿和石英浮选的影响[J]. 有色金属(选矿部分), 2012(6):79-82. OU L M, YE J S, ZENG W W. The influence of iron and ferrous ions on the flotation of siderite and quartz[J]. Nonferrous Metals (Mineral Processing Section), 2012(6):79-82.
[39] DENG R. , HU Y, KU J, ZUO W, YANG Z. Adsorption of Fe (III) on smithsonite surfaces and implications for flotation. Colloids and Surfaces A. 2017(533): 308-315.
[40] FUERSTENAU M, LOPEZ-VALDIVIESO A, FUERSTENAU D. Role of hydrolyzed cations in the natural hydropHobicity of talc[J]. International Journal of Mineral Processing, 1988(23):161-170.
-