粉煤灰中非晶相含量定量分析研究进展

聂轶苗, 陈阳, 翟培鑫, 刘攀攀, 王玲, 刘淑贤. 粉煤灰中非晶相含量定量分析研究进展[J]. 矿产综合利用, 2023, 44(1): 121-126, 132. doi: 10.3969/j.issn.1000-6532.2023.01.016
引用本文: 聂轶苗, 陈阳, 翟培鑫, 刘攀攀, 王玲, 刘淑贤. 粉煤灰中非晶相含量定量分析研究进展[J]. 矿产综合利用, 2023, 44(1): 121-126, 132. doi: 10.3969/j.issn.1000-6532.2023.01.016
Nie Yimiao, Chen Yang, Zhai Peixin, Liu Panpan, Wang Ling, Liu Shuxian. Research Progress of Quantitative Determination of the Amorphous Phase in Fly Ash[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 121-126, 132. doi: 10.3969/j.issn.1000-6532.2023.01.016
Citation: Nie Yimiao, Chen Yang, Zhai Peixin, Liu Panpan, Wang Ling, Liu Shuxian. Research Progress of Quantitative Determination of the Amorphous Phase in Fly Ash[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 121-126, 132. doi: 10.3969/j.issn.1000-6532.2023.01.016

粉煤灰中非晶相含量定量分析研究进展

  • 基金项目: 唐山市科技计划项目(19130223g);河北省高层次人才资助项目(A201901053);唐山市科学技术研究与发展计划项目(19150210E);河北省高等学校科学研究计划项目(QN2015091)
详细信息
    作者简介: 聂轶苗(1979-),女,博士,教授,硕士研究生导师,主要从事矿物加工及矿物材料的教学与科研工作
  • 中图分类号: TD985

Research Progress of Quantitative Determination of the Amorphous Phase in Fly Ash

  • 利用粉煤灰这种工业固废制备矿物聚合材料时,其活性来源主要是处于亚稳定态的非晶相,而非晶相含量的多少与由其制备的材料性能密切相关。文中综述了目前定量分析粉煤灰中非晶相含量的常用测试方法及分析结果,重点给出了XRD-Rietveld法、选择性化学溶解法两种方法的基本原理、应用及优缺点,并提出了目前研究中存在的主要问题及可能采取的途径,为粉煤灰中非晶相定量分析提供了思路和方向。

  • 加载中
  • [1]

    肖永丰. 粉煤灰提取氧化铝方法研究[J]. 矿产综合利用, 2020(3):165-162. XIAO Y F. Study on the methods of leaching alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(3):165-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    [2]

    高桂梅. 粉煤灰中氧化铝硫酸直接浸取工艺优化[J]. 矿产综合利用, 2019(6):110-116. GAO G M. Optimization process of extraction of alumina by sulfuric acid direct leaching from the fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(6):110-116. doi: 10.3969/j.issn.1000-6532.2019.06.024

    [3]

    聂轶苗, 刘攀攀, 夏淼, 等. 粉煤灰在碱性条件下的反应行为研究进展[J]. 矿产综合利用, 2021(2):77-84. NIE Y M, LIU P P, XIA M. Research progress of fly ash reaction behavior in alkaline conditions[J]. Multipurpose Utilization of Mineral Resources, 2021(2):77-84. doi: 10.3969/j.issn.1000-6532.2021.02.015

    [4]

    张旭. 准格尔电厂粉煤灰中铝、锂、镓、稀土元素浸出工艺研究[D]. 邯郸: 河北工程大学, 2018.

    ZHANG X. Study on leaching process of Aluminum, Lithium, Gallium and Rare Earth Elements in fly ash from Zhungeer powder plant[D]. Handan: Hebei University of Engineering, 2018.

    [5]

    王东明, 张世宇, 姚苏皖, 等. 改性硅灰、粉煤灰对超高性能混凝土(UHPC)性能的影响[J]. 混凝土与水泥制品, 2021(11):1-5,11. WANG D M, ZHANG S Y, YAO S W, et al. Influence of modified silica fume or fly ash on the performance of ultra-high performance concrete (UHPC)[J]. China Concrete and Cement Products, 2021(11):1-5,11. doi: 10.19761/j.1000-4637.2021.11.001.06

    [6]

    于成龙, 熊楠, 宋杰, 等. 近20年来中国利用粉煤灰合成分子筛研究进展[J]. 矿产综合利用, 2020(4):26-35. YU C L, XIONG N, SONG J, et al. Development of molecular sieves composition from fly ash in China in the last two decades[J]. Multipurpose Utilization of Mineral Resources, 2020(4):26-35. doi: 10.3969/j.issn.1000-6532.2020.04.005

    [7]

    卓庆奉, 巴蕾, 王奇峰. 掺粉煤灰的混合充填骨料配比优化实验[J]. 矿产综合利用, 2021(3):187-192,199. ZHUO Q F, BA L, WANG Q F. Optimum experiment of aggregate proportion for mixed filling with fly ash[J]. Multipurpose Utilization of Mineral Resources, 2021(3):187-192,199. doi: 10.3969/j.issn.1000-6532.2021.03.030

    [8]

    张永娟, 张雄. 粉煤灰活性影响因子的研究[J]. 粉煤灰综合利用, 2006(5):8-11. ZHANG Y J, ZHANG X. Research on the factors influencing fly ash activity[J]. Fly Ash Comprehensive Utilization, 2006(5):8-11. doi: 10.3969/j.issn.1005-8249.2006.05.003

    [9]

    朱文嘉. Rietveld法的理论分析及其在相分析中的应用[D]. 湘潭: 湘潭大学, 2017.

    ZHU W J. Theoretical analysis of Rietveld method and its application in phase analysis[D]. Xiangtan: Xiangtan University, 2017.

    [10]

    邢文忠, 洪秀成, 章林, 等. 基于Rietveld法TOPAS定量分析在玻璃原料中的应用研究[J]. 玻璃纤维, 2018(1):20-23. XING W Z, HONG X C, ZHANG L, et al. Research on the application of Rietveld-based TOPAS quantitative analysis for glass raw materials[J]. Fiber Glass, 2018(1):20-23. doi: 10.3969/j.issn.1005-6262.2018.01.006

    [11]

    赵丕琪, 王培铭, 刘贤萍. 基于Rietveld法硅酸盐水泥熟料定量结果的准确性分析[J]. 功能材料, 2015, 5(46):05095-05100. ZHAO P Q, WANG P M, LIU X P. Accuracy in quantitative phase analysis of Portland cement clinkers by Rietveld method[J]. Journal of Functional Materials, 2015, 5(46):05095-05100.

    [12]

    唐续龙. 基于Rietveld全谱拟合的粉煤灰物相定量研究[J]. 有色冶金节能, 2015, 1:48-51. TANG X L. Quantitative analysis of mineral phase in fly ash based on Rietveld Whole Pattern Fitting[J]. Energy Saving of Nonferrous Metallurgy, 2015, 1:48-51.

    [13]

    许闽, 杨克条, 吴和平, 等. 全谱拟合XRD Rietveld-PONKCS法定量分析通用硅酸盐水泥中的矿物组分含量[J]. 水泥, 2020(2):60-65. XU M, YANG K T, WU H P, et al. Quantitative determination of mineral content in the common Portland cement by the XRD Rietveld-PUONCKS method[J]. Cement, 2020(2):60-65.

    [14]

    A. Fernandez-Jimenez, A. G. de la Torre, A. Palomo, et al. Quantitative determination of phase in the alkali activation of fly ash. Part I: Potential ash reactivity[J]. Fuel, 2006, 85:625-634. doi: 10.1016/j.fuel.2005.08.014

    [15]

    厉超. 矿渣-高-低钙粉煤灰玻璃体及其水化特性研究[D]. 北京: 清华大学, 2011.

    LI C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism[J]. Beijing: Tsinghua University, 2011.

    [16]

    吴林丽, 姚广春, 刘宜汉, 等. 粉煤灰颗粒HF酸表面改性处理[J]. 有色矿冶, 2004, 20(5):37-40,25. WU L L, YAO G C, LIU Y H, et al. Counter-measures for bauxite resources of alumina enterprise surface acid treatment of fly ash[J]. Non-Ferrous Mining and Metallurgy, 2004, 20(5):37-40,25. doi: 10.3969/j.issn.1007-967X.2004.05.012

    [17]

    李晔. 粉煤灰各组分絮凝性、酸碱处理对絮凝性的影响及其影响机理的研究[D]. 郑州: 郑州大学, 2006.

    LI Y. Research of fly ash adsorb ability, effect of acid /alkali on the samples’ adsorb ability and the effect mechanism[D]. Zhengzhou: Zhengzhou University, 2006.

    [18]

    张永康. 高铝粉煤灰处理过程中的结构演变[D]. 长沙: 中南大学, 2012.

    ZHANG Y K. Structure evolution of high-aluminum coal fly ash during the treating process[D]. Changsha: Central South Universtiy, 2012.

    [19]

    张学里, 燕可洲, 马志斌, 等. 不同炉型潞安煤灰理化及酸/碱溶解特性[J]. 煤炭转化, 2020, 43(1):81-88. ZHANG X L, YAN K Z, MA Z B, et al. Physicochemical and acid/alkali dissolution characteristics of Lu’an coal ash from different types of furnace[J]. Coal Conversion, 2020, 43(1):81-88. doi: 10.19726/j.cnki.ebcc.202001011

    [20]

    LI C, LI Y, SUN H H, et al. The composition of fly ash glass phase and its dissolution properties applying to geopolymeric materials[J]. Journal of the American Ceramic Society. 1994(6): 1773-1778.

    [21]

    Liang D, Readey DW. Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures[J]. Journal of the American Ceramic Society. 1987(70): 570-577.

    [22]

    陈晨, 贡伟亮, 李琴, 等. 粉煤灰碱浸出体系反应过程分析: I影响因素[J]. 环境科学与技术, 2013, 36(10):122-125,131. CHEN C, GONG W L, LI Q, et al. Analysis of reaction process of fly ash in alkaline system: reaction influencing factors[J]. Environmental Science and Technology, 2013, 36(10):122-125,131.

    [23]

    Jiang Z Q, Yang J, Ma H W, et al. Rection behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process[J]. Trans. Nonferrous Met. Soc. China. 2015, 25: 2065-2072.

    [24]

    贺实月, 李会泉, 李少鹏, 等. 煤粉炉高铝粉煤灰碱溶脱硅反应动力学[J]. 中国有色金属学报, 2014, 24(7):1888-1894. HE S Y, LI H Q, LI S P, et al. Kinetics of desilication process of fly ash with high aluminum from pulverized coal fired boiler in alkali solution[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7):1888-1894. doi: 10.19476/j.ysxb.1004.0609.2014.07.029

    [25]

    Xu H, van Deventer JSJ. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars[J]. Colloids and Surfaces A:Physicochem Eng Aspects, 2003(216):27-44.

    [26]

    Miki Inada, Yukari Eguchi, Naoya Enomoto, et al. Synthesis of zeolite from coal fly ashes with different silica-alumina compostion[J]. Fuel, 2005(84):299-304.

    [27]

    张战军, 孙俊民, 姚强, 等. 从高铝粉煤灰中提取非晶态SiO2的实验研究[J]. 矿物学报, 2007, 27(2):137-142. ZHANG Z J, SUN J M, YAO Q, et al. Research on the extraction of amorphous SiO2 from high-aluminium fly ash[J]. Acta Mineralogica Sinica, 2007, 27(2):137-142. doi: 10.3321/j.issn:1000-4734.2007.02.008

    [28]

    Liu XT, Wang BD, Xian YF, et al. Pre-desilication process of alumina-rich fly ash in alkali solution[J]. China Powder Science and Technology. 2013(19): 24-27.

    [29]

    Su SQ, Yang J, Ma HW, et al. Preparation of ultrafine aluminum hudroxide from coal fly ash by fly ash by alkali dissolution process[J]. Integrated Ferroelectrics. 2011(128): 155-162.

    [30]

    Zhang J B, Li S P, Li H Q, et al. Preparation of mulllite ceramic for high-alumina coal fly ash through mechanical-chemical synergistic activation[J]. Ceramics International, 2017(43):6532-6541.

    [31]

    Zhu GR, Tan W, Sun JM, et al. Effects and mechanism research of the desilication pretreatment for high-aluminum fly ash[J]. Energy &Fuels, 2013(27): 6948-6954.

    [32]

    Zhang JB, Li HQ, Li SP, et al. Mechanism of mechanical-chemical synergistic activation for preparation of mullite ceramics from high-alumina coal fly ash[J]. Ceramics International. 2018(44): 3884-3892.

    [33]

    李辉, 诸葛丽君, 史诗, 等. NaOH激发粉煤灰基胶凝材料的水化产物[J]. 硅酸盐学报, 2012, 40(2):234-239. LI H, ZHUGE L J, SHI S, et al. Hydration products of fly ash based cementing material activated by NaOH[J]. Journal of the Chinese Ceramic Society, 2012, 40(2):234-239. doi: 10.14062/j.issn.0454-5648.2012.02.010

    [34]

    A. Fernandez-Jimenez, A. G. de la Torre, A. Palomo, et al. Quantitative determination of phase in the alkali activation of fly ash. Part II: Degree of reaction[J]. Fuel, 2006(85):1960-1969.

    [35]

    陈晨, 贡伟亮, 李琴, 等. 粉煤灰碱浸出体系反应过程分析: II反应动力学[J]. 环境科学与技术, 2013, 36(12):6-9. CHEN C, GONG W L, LI Q, et al. Analysis of reaction process of fly ash in alkali system: reaction kenetics[J]. Environmental Science and Technology, 2013, 36(12):6-9.

    [36]

    胡朋朋. 高铝粉煤灰中锂的赋存状态及预脱硅过程浸出规律研究[D]. 北京: 中国科学院大学, 2018.

    HU P P. Occurrence of lithium in high-alumina-coal fly ash and its leaching behaviors during pre-desilication[J]. Beijing: University of Chinese Academy of Sciences, 2018.

    [37]

    张建波, 李占兵, 杨晨年, 等. 粉煤灰中非晶态硅赋存形态及定量分析方法研究[J]. 洁净煤技术, 2019, 25(3):116-121. ZHANG J B, LI Z B, YANG C N, et al. Investigation on the occurrence morphology and quantitative analysis of amorphous silicon in coal fly ash[J]. Clean Coal Technology, 2019, 25(3):116-121. doi: 10.13226/j.issn.1006-6772.19040101

    [38]

    张谦, 何涌, 吕彦杰, 等. 微晶玻璃中物相含量的回归分析计算[J]. 分析测试学报, 2008, 4(27):415-418. ZHANG Q, HE Y, LV Y J, et al. Quantitative analysis of crystal phases in glass ceramics by linear regression method[J]. Journal of Instrumental Analysis, 2008, 4(27):415-418. doi: 10.3969/j.issn.1004-4957.2008.04.018

    [39]

    马领军, 石鹏程, 韩丽娜, 等. 粉煤灰的水热预处理联合酸浸过程元素溶出行为研究[J]. 太原理工大学学报, 2020, 51(3):338-344. MA L J, SHI P C, HAN L N, et al. Dissolution rule of elements of hydrothermal pre-activation combined with acid leaching of fly ash[J]. Journal of Taiyuan University of Technology, 2020, 51(3):338-344. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.03.003

  • 加载中
计量
  • 文章访问数:  1145
  • PDF下载数:  338
  • 施引文献:  0
出版历程
收稿日期:  2021-01-01
刊出日期:  2023-02-25

目录