-
摘要:
钼尾矿作为全球开采钼矿产资源产生的固体废弃物之一,将其替代混凝土细骨料或水泥既可解决环境污染,还可弥补天然砂资源短缺的现状,是钼尾矿最经济、最环保的资源化利用方式之一,符合绿色可持续发展的战略要求。本文综述了钼尾矿在混凝土中应用的研究进展,分析了钼尾矿的理化特性,探讨了钼尾矿混凝土的工作性能、力学性能及耐久性能,提出了钼尾矿在混凝土应用中现存的主要问题。以期为实现钼尾矿在混凝土中的广泛应用打下基础。
Abstract:Molybdenum tailings, as one of the solid wastes which are produced by the exploitation of molybdenum mineral resources in the world, can not only solve the environmental pollution, but also make up for the shortage of natural sand resources by replacing concrete fine aggregate or cement with molybdenum tailings. It is one of the most economically and environmentally friendly resource utilization method of molybdenum tailings, due to it can able to meet the strategic requirements of green and sustainable development. In this paper, the research progress of application of molybdenum tailings in concrete is summarized. Firstly, the physical and chemical properties of molybdenum tailings are analyzed, and secondly, the working performance, mechanical performance and durability performance of molybdenum tailings concrete are discussed, finally the main problems existing in application of molybdenum tailings in concrete are suggested. This work is expected to be useful for the wide application of molybdenum tailings in concrete.
-
Key words:
- Molybdenum tailings /
- Aggregate /
- Cement /
- Concrete /
- Workability /
- Mechanical properties /
- Durability
-
-
图 2 不同强度等级不同替代率钼尾矿混凝土对抗压强度的影响[13]
Figure 2.
图 3 砂率对钼尾矿混凝土抗压强度的影响[15]
Figure 3.
图 4 不同取代率下钼尾矿混凝土的耐久性系数[12]
Figure 4.
图 5 不同替代率钼尾矿混凝土对冻融循环下相对弹性模量的影响[13]
Figure 5.
图 6 不同替代率钼尾矿混凝土对碳化深度的影响[18]
Figure 6.
表 1 钼尾矿砂与天然砂的主要化学成分/% [16,18,25-27]
Table 1. Main chemical composition of molybdenum tailing sand and natural sand[16,18,25-27]
SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SO3 烧失量 钼尾矿 44.85~72.38 3.48~9.12 9.19~15.57 1.08~6.57 2.25~19.71 0.27~1.77 1.06~1.93 1.06~5.89 0.13~0.65 0.22~7.36 0.04~5.00 1.10~2.56 天然砂 71.34 8.89 5.73 1.16 5.49 1.56 1.66 - - - - - 表 2 1 m3的钼尾矿混凝土配合比[12]
Table 2. Concrete mix ratio of 1 m3
混凝土
强度
等级替代率/
%混合比例/(kg·m-3) 42.5R级
配水泥水 天然石灰
岩砾石天然砂 钼尾矿 增塑剂 C40 0 476 200 1155 569 0 0 25 476 200 1155 427 142 0 50 476 200 1155 285 284 0 100 476 200 1155 0 569 0 C50 0 550 170 1245 484 0 5.5 25 550 170 1245 363 121 5.5 50 550 170 1245 242 242 5.5 100 550 170 1245 0 484 5.5 表 3 1 m3的钼尾矿混凝土配合比[13]
Table 3. Concrete mix ratio of 1 m3
混凝土
强度等级砂率/% 水灰比 混合比例/(kg·m-3) 水泥 水 石子 天然砂 钼尾矿 减水剂 C40 0.38 0.39 435 170 1113 682 0 4.0 0.38 0.39 435 170 1113 546 136 4.35 0.38 0.39 435 170 1113 477 205 4.35 0.38 0.39 435 170 1113 409 273 4.35 0.38 0.39 435 170 1113 341 341 4.35 表 4 1 m3的钼尾矿混凝土配合比[19]
Table 4. Concrete mix ratio of 1 m3
混凝土
强度等级水胶比 混合比例/(kg·m-3) 胶凝材料 水 石子 河砂 钼尾矿 替代率(%) C60 0.26 550 143 1387 463 0 0 0.26 550 143 1387 370 136 20 0.26 550 143 1387 278 205 40 0.26 550 143 1387 185 273 60 0.26 550 143 1387 93 341 80 0.26 550 143 1387 0 463 100 表 5 1 m3钼尾矿混凝土配合比[18]
Table 5. Concrete mix ratio of 1 m3
钼尾矿
替代率/%水胶比 混合比例/(kg·m-3) 水泥 水 石 砂 粉煤灰 钼尾矿 高效泵
送剂基准∶0 0.38 380 175 1030 760 80 0 4.6 粉煤灰∶100 0.38 380 175 1030 760 0 80 4.6 水泥∶5 0.38 361 175 1030 760 80 19 4.6 水泥∶10 0.38 342 175 1030 760 80 38 4.6 水泥∶15 0.38 323 175 1030 760 80 57 4.6 水泥∶20 0.38 304 175 1030 760 80 76 4.6 -
[1] 中国矿产资源报告(2019)[R]. 自然资源部, 2019.
China mineral resources report (2019)[R]. Ministry of Natural Resources, 2019.
[2] 张萌. 尾矿砂在混凝土中的应用试验研究[J]. 商品混凝土, 2020(8):74-75. ZHANG M. Experimental study on the application of tailings sand in concrete[J]. Commercial Concrete, 2020(8):74-75.
[3] 徐航, 刘诗竹. 我国尾矿综合利用发展现状及前景展望[J]. 农家参谋, 2019, 625(14):206-206. XU H, LIU S Z. Development status and prospects of comprehensive utilization of tailings in China[J]. Farm Staff, 2019, 625(14):206-206.
[4] Siddique S, Jang J G. Assessment of molybdenum mine tailings as filler in cement mortar[J]. Journal of Building Engineering, 2020:101322.
[5] 周文娟, 林松. 尾矿细砂砂浆试验研究[J]. 混凝土, 2013(7):108-109+123. ZHOU W J, LIN S. Experimental study of fine tailing sand mortar[J]. Concrete, 2013(7):108-109+123. doi: 10.3969/j.issn.1002-3550.2013.07.030
[6] 王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7):2076-2086. WANG A G, ZHU Y Y, XU H Y, et al. Research progress on coal gangue aggregate for concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7):2076-2086. doi: 10.16552/j.cnki.issn1001-1625.2019.07.017
[7] 崔孝炜, 邓惋心, 赵雨曦, 等. 利用铁尾矿作为混凝土掺和料的基础研究[J]. 非金属矿, 2020, 43(4):88-91. CUI X W, DENG W X, ZHAO Y X, et al. Basic research on the preparation of mineral admixtures with iron ore tailings[J]. Non-Metallic Mines, 2020, 43(4):88-91. doi: 10.3969/j.issn.1000-8098.2020.04.025
[8] 李峰, 崔孝炜, 刘璇, 等. 钼尾矿在建筑材料中的二次利用研究进展[J]. 矿产综合利用, 2021(3):132-139. LI F, CUI X W, LIU X, et al. Research progress on secondary utilization of molybdenum tailings in building materials[J]. Multipurpose Utilization of Mineral Resources, 2021(3):132-139.
[9] 伍红强, 刘诚, 陈延飞. 我国钼尾矿资源综合利用研究进展[J]. 金属矿山, 2018(8):169-174. WU H Q, LIU C, CHEN Y F. Research progress of and comprehensive utilized on Molybdenum Tailings Resources in China[J]. Metal Mine, 2018(8):169-174. doi: 10.19614/j.cnki.jsks.201808032
[10] 崔孝炜, 狄燕清, 南宁, 等. 钼尾矿骨料混凝土的试验研究[J]. 混凝土与水泥制品, 2016(8):84-87. CUI X W, DI Y Q, NAN N. Experimental research on molybdenum tailings aggregate concrete[J]. China Concrete and Cement Products, 2016(8):84-87. doi: 10.3969/j.issn.1000-4637.2016.08.021
[11] 席晓光, 张金良. 浅谈钼尾矿综合利用[J]. 矿业工程, 2013, 11(5):62-64. XI X G, ZHANG J L. Introduction to Molybdenum Tailings Comprehensive Utilization[J]. Mining Engineering, 2013, 11(5):62-64. doi: 10.3969/j.issn.1671-8550.2013.05.025
[12] Gao S, Kang S B. Sustainable applications for utilizing molybdenum tailings in concrete[J]. Journal of Cleaner Production, 2020, 266:122020. doi: 10.1016/j.jclepro.2020.122020
[13] 曹晓润, 刘冬, 李建伟, 等. 利用钼尾矿配制混凝土的可行性研究[J]. 河南建材, 2016(4):268-270. CAO X R, LIU D, LI J W, et al. Feasibility study of using molybdenum tailings to prepare concrete[J]. Henan Building Materials, 2016(4):268-270. doi: 10.3969/j.issn.1008-9772.2016.04.156
[14] 崔孝炜, 狄燕清, 刘璇, 等. 利用商洛钼尾矿制备混凝土[J]. 矿产综合利用, 2017(4):102-106. CUI X W, DI Y Q, LIU X. Preparation of high performance concrete with molybdenum tailings of Shangluo[J]. Multipurpose Utilization of Mineral Resources, 2017(4):102-106. doi: 10.3969/j.issn.1000-6532.2017.04.023
[15] 崔孝炜, 狄燕清, 庞华, 等. 用某钼尾矿制备高性能混凝土的试验[J]. 金属矿山, 2017(7):193-196. CUI X W, DI Y Q, PANG H. Research on preparation of high performance concrete with molybdenum tailings[J]. Metal Mine, 2017(7):193-196. doi: 10.3969/j.issn.1001-1250.2017.07.040
[16] 李春, 王恩峰, 崔乐, 等. 钼尾矿免蒸压加气混凝土的试验研究[J]. 矿产综合利用, 2017(5):80-84. LI C, WANG E F, CUI L, et al. Experimental study on non-autoclaved aerated concrete from molybdenum tailings[J]. Multipurpose Utilization of Mineral Resources, 2017(5):80-84. doi: 10.3969/j.issn.1000-6532.2017.05.018
[17] 崔孝炜, 狄燕清, 南宁, 等. 掺钼尾矿高性能混凝土的制备[J]. 金属矿山, 2017(1):192-196. CUI X W, DI Y Q, NAN N, et al. Preparation of high performance concrete with molybdenum tailings[J]. Metal Mine, 2017(1):192-196. doi: 10.3969/j.issn.1001-1250.2017.01.041
[18] 胡家兵, 朱领, 张伟. 磨细钼尾矿粉用作混凝土掺合料的性能研究[J]. 混凝土与水泥制品, 2016(12):88-91. HU J B, ZHU L, ZHANG W. Study on the performance of ground molybdenum tailings powder as concrete admixture[J]. China Concrete and Cement Products, 2016(12):88-91. doi: 10.3969/j.issn.1000-4637.2016.12.020
[19] 刘世昌. 极细颗粒钼尾矿制备高强混凝土的研究[D]. 邯郸: 河北工程大学, 2017.
LIU S C. Study on preparation of high strength concrete by ultrafine particle molybdenum tailings[D]. Handan: Hebei University of Engineering, 2017.
[20] 张亮, 杨卉芃, 冯安生. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16. ZHANG L, YANG H P, FENG A S. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003
[21] 郭家林, 王之宇, 刘明宝. 铝粉增强钼尾矿发泡水泥力学性能研究[J]. 矿产综合利用, 2020(4):167-171. GUO J L, WANG Z Y, LIU M B. Study on reinforced mechanical properties of molybdenum tailings foam cement by aluminum powder[J]. Multipurpose Utilization of Mineral Resources, 2020(4):167-171. doi: 10.3969/j.issn.1000-6532.2020.04.029
[22] 杨凯志, 陈红兵, 胡真, 等. 广东某铜钼多金属硫化矿混合精矿中钼的高效分离[J]. 矿产综合利用, 2020(2):44-48. YANG K Z, CHEN H B, HU Z, et al. Research on efficient separation Mo for Cu-Mo mixed concentrate from Guangdong copper-molybdenum polymetallic sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):44-48. doi: 10.3969/j.issn.1000-6532.2020.02.007
[23] 胡贵生, 章超, 钱晨阳, 等. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2):233-238. HU G S, ZHANG C, QIAN C Y, et al. Recent research progress of comprehensive utilization of molybdenum tailings resources[J]. Materials Reports, 2019, 33(Z2):233-238.
[24] Code of Federal Regulations(CFR), National Archives and Records Administration, US Government Printing Office, Washington.
[25] 李建涛, 崔杰, 王之宇. 利用商洛钼尾矿制备混凝土保温砌块的试验研究[J]. 新型建筑材料, 2015, 42(3):80-83. LI J T, CUI J, WANG Z Y. Experimental study on the preparation of heat-insulating concrete block using Shangluo molybdenum tailings[J]. New Building Materials, 2015, 42(3):80-83. doi: 10.3969/j.issn.1001-702X.2015.03.021
[26] 聂琪, 戈保梁, 张晋禄, 等. 微波助磨技术处理某钼矿[J]. 矿产综合利用, 2019(1):39-43. NIE Q, GE B L, ZHANG J L, et al. Microwave-assisted grinding of a molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):39-43. doi: 10.3969/j.issn.1000-6532.2019.01.008
[27] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺研究[J]. 矿产综合利用, 2019(5):32-36. JIAN S, HU Y H, SUN W. Process study on a low- grade mineral copper-molybdenum ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36. doi: 10.3969/j.issn.1000-6532.2019.05.007
[28] Bai Z Y, Li K, Ma X P, et al. Preparation and characterization of molybdenum tailings-based water storage material[J]. Materials Chemistry and Physics, 2019, 236:121791. doi: 10.1016/j.matchemphys.2019.121791
-