低碱度生态型人工鱼礁材料的实验研究

苏岳威, 赵景刚, 张佳康, 孙绍康, 王俊祥, 吕宪俊. 低碱度生态型人工鱼礁材料的实验研究[J]. 矿产综合利用, 2023, 44(1): 197-203. doi: 10.3969/j.issn.1000-6532.2023.01.029
引用本文: 苏岳威, 赵景刚, 张佳康, 孙绍康, 王俊祥, 吕宪俊. 低碱度生态型人工鱼礁材料的实验研究[J]. 矿产综合利用, 2023, 44(1): 197-203. doi: 10.3969/j.issn.1000-6532.2023.01.029
Su Yuewei, Zhao Jinggang, Zhang Jiakang, Sun Shaokang, Wang Junxiang, Lv Xianjun. Experimental Study on Low Alkalinity Ecotype Artificial Reef Materials[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 197-203. doi: 10.3969/j.issn.1000-6532.2023.01.029
Citation: Su Yuewei, Zhao Jinggang, Zhang Jiakang, Sun Shaokang, Wang Junxiang, Lv Xianjun. Experimental Study on Low Alkalinity Ecotype Artificial Reef Materials[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 197-203. doi: 10.3969/j.issn.1000-6532.2023.01.029

低碱度生态型人工鱼礁材料的实验研究

  • 基金项目: 国家自然科学基金项目(51674161);山东省自然科学基金(ZR2019BEE075)
详细信息
    作者简介: 苏岳威(1996-),男,硕士研究生,主要从事资源综合利用方向研究
    通讯作者: 吕宪俊(1965-),男,教授,博士生导师
  • 中图分类号: TD985; X75

Experimental Study on Low Alkalinity Ecotype Artificial Reef Materials

More Information
  • 利用矿渣-CaO-脱硫石膏为胶凝材料、海砂为骨料,制备出了较高强度的新型人工鱼礁。借助力学性能测试、X射线衍射、热重分析和扫描电镜考查了脱硫石膏对新型人工鱼礁材料的抗压强度和水化产物的影响。结果表明:适量脱硫石膏的掺加能够显著提高CaO激发矿渣胶凝材料的胶结强度,促进钙矾石(AFt)在水化过程的优先生成,较佳石膏掺量条件下3 d强度可提高51.4%,7 d强度提高35.7%,28 d强度提高25.2%;重金属离子溶出检测结果表明,浸泡试样的海水水质符合国家一类海水水质标准;表面浸出液pH值检测显示,人工鱼礁材料试块海水浸泡初期,表层有少量OH-溶出,使浸泡液 pH 值由新鲜海水的8.0升至8.5,但60 d后恢复到正常值;此外,海域实地挂板实验表明,制作出的鱼礁海水相容性良好,有大量水生生物附着。低碱度生态型人工鱼礁能够满足鱼礁的基本性能要求,具有广阔的应用前景,为矿渣及海砂的资源化综合利用提供了一条新的途径。

  • 加载中
  • 图 1  日照矿渣的XRD

    Figure 1. 

    图 2  脱硫石膏的XRD

    Figure 2. 

    图 3  不同石膏掺量条件下鱼礁试样抗压强度的影响

    Figure 3. 

    图 4  不同水化龄期的XRD

    Figure 4. 

    图 5  28 d水化龄期的TG-DTG分析

    Figure 5. 

    图 6  28 d水化龄期的SEM分析

    Figure 6. 

    图 7  浸泡试块海水pH值变化规律

    Figure 7. 

    图 8  投入后90 d时试块生物附着效果

    Figure 8. 

    表 1  日照矿渣化学成分/%

    Table 1.  Chemical compositions of Rizhao slag

    MgOAl2O3SiO2CaOTiO2SO3Na2OMnO
    10.4515.3833.1737.581.851.080.340.48
    下载: 导出CSV

    表 2  海砂粒度组成

    Table 2.  Grain size composition of sea sand

    粒径/
    mm
    4.564.56~2.362.6~1.181.18~0.60.6~0.30.3~0.15
    含量/%04.1210.0158.0424.043.01
    下载: 导出CSV

    表 3  海水中主要离子浓度/(mg·L-1)

    Table 3.  Concentration of main ions in seawater (mg·L-1)

    离子Na+K+Ca+Mg2+Cl-SO42-CO42-
    含量11260.5359.1375.81162.517699.32127.3105.2
    下载: 导出CSV

    表 4  胶凝材料配比

    Table 4.  Ratio of cementing material

    编号配比/%水灰比
    矿渣CaO脱硫石膏
    AR1802000.5
    AR2801550.5
    AR38012.57.50.5
    AR48010100.5
    AR5807.512.50.5
    AR6805150.5
    下载: 导出CSV

    表 5  浸出液中重金属离子测试数据

    Table 5.  Test data of heavy metal ions in the leachate

    样品各重金属离子浓度/(mg·L-1)
    HgCrPbCdCuAs
    国标≤0.0005≤0.1000≤0.0050≤0.0050≤0.0100≤0.0300
    AR4-0.00300.0005-0.0040-
    注:-表示没有
    下载: 导出CSV

    表 6  AR4试块附着生物名录

    Table 6.  List of attached organisms on AR4 test block

    中文名称拉丁名称类别数量
    孔石莼Ulvapertusa藻类-绿藻6
    环节藻Champiaparvula藻类-红藻4
    日本多管藻Polysiphoniajaponicus藻类-红藻2
    海葵Anthopleurasp刺胞动物3
    裂虫科一种Syllidae多毛类1
    褶牡蛎Grassostreacf.Plicatula软体动物6
    纹藤壶B.amphitriteamphitrite甲壳类1
    扇贝Placopectamagellanicus软体动物3
    太平洋牡蛎Grassostreagigas软体动物1
    紫贻贝M.provincialis软体动物2
    麦秆虫Caprellasp甲壳类1
    青岛板钩虾S.qingdaoensis甲壳类2
    长尾亮钩虾Photislongicaudata甲壳类3
    下载: 导出CSV
  • [1]

    Zheng X, Ji T, Easa S M, et al. Evaluating feasibility of using sea water curing for green artificial reef concrete[J]. Construction and Building Materials, 2018, 187:545-552. doi: 10.1016/j.conbuildmat.2018.07.140

    [2]

    Chen C, Ji T, Zhuang Y, et al. Workability, mechanical properties and affinity of artificial reef concrete[J]. Construction and Building Materials, 2015, 98:227-236. doi: 10.1016/j.conbuildmat.2015.05.109

    [3]

    江艳娥, 陈丕茂, 林昭进, 等. 不同材料人工鱼礁生物诱集效果的比较[J]. 应用海洋学学报, 2013, 32(3):418-425. JIANG Y E, CHEN P M, LIN Z J, et al. Comparison of effectiveness of various artificial reef materials for fish attraction[J]. Journal of Applied Oceanography, 2013, 32(3):418-425.

    [4]

    于淼, 倪文, 陈勇, 等. 齐大山铁尾矿制作人工鱼礁材料的研究[J]. 金属矿山, 2012, 11:163-168. YU M, NI W, CHEN Y, et al. Investigation on artificial reefs materials made from Qidashan Iron Tailings[J]. Metal Mine, 2012, 11:163-168.

    [5]

    王震, 公丕海, 关长涛, 等. 青岛石雀滩海域人工鱼礁材料对附着生物群落结构的影响[J]. 渔业科学进展, 2019, 40(4):163-171. WANG Z, GONG P H, GUAN C T, et al. Effect of different artificial reefs on the community structure of organisms in Shique Beach of Qingdao[J]. Progress in Fishery Sciences, 2019, 40(4):163-171.

    [6]

    刘庆, 臧浩宇, 吴蓬, 等. NaOH激发矿渣胶凝材料的29Si NMR研究[J]. 硅酸盐通报, 2019, 38(2):553-558. LIU Q, ZANG H Y, WU P, et al. 29Si NMR Study of NaOH-Activated Slag Cementitious Materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2):553-558.

    [7]

    范剑明, 李娜, 冯鑫国. 粉煤灰/矿渣复合基沙土固化剂的制备及固化性能研究[J]. 矿产综合利用, 2019(6):105-109. FAN J M, LI N, FENG X G. Study on preparation and curing performance of fly ash/slag-based soil stabilizer[J]. Multipurpose Utilization of Mineral Resources, 2019(6):105-109.

    [8]

    陈勇, 田涛, 倪文, 等. 凝石胶凝材料作为人工鱼礁材料的可行性研究Ⅰ——海水的pH及其与水泥供试体的比较[J]. 大连海洋大学学报, 2012, 27(3):269-274. CHEN Y, TIAN T, NI W, et al. The feasibility of congealing stone used as artificial reef materials Ⅰ——compressive strength, and pH in immersed seawater reference to cement[J]. Journal Of Dalian Ocean University, 2012, 27(3):269-274.

    [9]

    Xu Q, Ji T, Yang Z, et al. Steel rebar corrosion in artificial reef concrete with sulphoaluminate cement, sea water and marine sand[J]. Construction and Building Materials, 2019, 227:116688-116698. doi: 10.1016/j.conbuildmat.2019.116688

    [10]

    Xu Q, Ji T, Yang Z, et al. Preliminary investigation of artificial reef concrete with sulphoaluminate cement, marine sand and sea water[J]. Construction and Building Materials, 2019, 211:837-846. doi: 10.1016/j.conbuildmat.2019.03.272

    [11]

    李田雨, 张玉梅, 刘小艳, 等. 海水海砂高性能海工混凝土力学及早期工作性研究[J]. 混凝土, 2019, 11:1-5. LI T Y, ZHANG Y M, LIU X Y, et al. Research on the preparation and durability of brine marine sand high performance concrete[J]. Concrete, 2019, 11:1-5.

    [12]

    Dilnesa B Z, Wieland E, Lothenbach B, et al. Fe-containing phases in hydrated cements[J]. Cement and Concrete Research, 2014, 58:45-55. doi: 10.1016/j.cemconres.2013.12.012

    [13]

    Santhanam M, Cohen M D, Olek J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars[J]. Cement and Concrete Research, 2002, 32(4):585-592. doi: 10.1016/S0008-8846(01)00727-X

    [14]

    吴蓬, 吕宪俊, 王俊祥, 等. 硬石膏对熟料激发矿渣水化反应的影响[J]. 中国矿业大学学报, 2016, 45(3):615-622. WU P, LV X J, WANG J X, et al. Effect of anhydrite on hydration of clinker activated slag cementing materials[J]. Journal of China University of Mining & Technology, 2016, 45(3):615-622.

  • 加载中

(8)

(6)

计量
  • 文章访问数:  679
  • PDF下载数:  200
  • 施引文献:  0
出版历程
收稿日期:  2021-09-10
刊出日期:  2023-02-25

目录