-
摘要:
利用矿渣-CaO-脱硫石膏为胶凝材料、海砂为骨料,制备出了较高强度的新型人工鱼礁。借助力学性能测试、X射线衍射、热重分析和扫描电镜考查了脱硫石膏对新型人工鱼礁材料的抗压强度和水化产物的影响。结果表明:适量脱硫石膏的掺加能够显著提高CaO激发矿渣胶凝材料的胶结强度,促进钙矾石(AFt)在水化过程的优先生成,较佳石膏掺量条件下3 d强度可提高51.4%,7 d强度提高35.7%,28 d强度提高25.2%;重金属离子溶出检测结果表明,浸泡试样的海水水质符合国家一类海水水质标准;表面浸出液pH值检测显示,人工鱼礁材料试块海水浸泡初期,表层有少量OH-溶出,使浸泡液 pH 值由新鲜海水的8.0升至8.5,但60 d后恢复到正常值;此外,海域实地挂板实验表明,制作出的鱼礁海水相容性良好,有大量水生生物附着。低碱度生态型人工鱼礁能够满足鱼礁的基本性能要求,具有广阔的应用前景,为矿渣及海砂的资源化综合利用提供了一条新的途径。
Abstract:A new type of artificial reef with high strength was prepared by using slag-CaO-FGD gypsum as cementitious material and sea sand as aggregate. The effects of FGD gypsum on the compressive strength and hydration products of the new artificial reef materials were investigated by means of mechanical properties test, X-ray diffraction, thermogravimetric analysis and SEM. The results show that the addition of appropriate amount of desulfurized gypsum can significantly improve the cementitious strength of CaO activated slag cementitious materials, and promote the preferential formation of ettringite (AFt) in the hydration process. Under the optimal gypsum content, the 3 d strength can be increased by 51.4%, the 7 d strength by 35.7%, and the 28 d strength by 25.2%. The dissolution test results of heavy metal ions show that the seawater quality of the immersed samples conforms to the national first class sea water quality standard; pH detection of surface leaching solution showed that a small amount of OH- dissolved in the surface of the artificial reef material test block at the initial stage of seawater immersion, so that the pH value of immersion solution increased from 8.0 of fresh seawater to 8.5, but returned to the normal value after 60 days; in addition, the real sea area hanging board experiment showed that the reef had good marine compatibility and a large number of aquatic organisms attached. Low-alkalinity ecological artificial fish reefs can meet the basic performance requirements of fish reefs, have broad application prospects, and provide a new way for the comprehensive utilization of slag and sea sand.
-
Key words:
- Slag /
- Sea sand /
- Artificial reef /
- Marine compatibility
-
-
表 1 日照矿渣化学成分/%
Table 1. Chemical compositions of Rizhao slag
MgO Al2O3 SiO2 CaO TiO2 SO3 Na2O MnO 10.45 15.38 33.17 37.58 1.85 1.08 0.34 0.48 表 2 海砂粒度组成
Table 2. Grain size composition of sea sand
粒径/
mm4.56 4.56~2.36 2.6~1.18 1.18~0.6 0.6~0.3 0.3~0.15 含量/% 0 4.12 10.01 58.04 24.04 3.01 表 3 海水中主要离子浓度/(mg·L-1)
Table 3. Concentration of main ions in seawater (mg·L-1)
离子 Na+ K+ Ca+ Mg2+ Cl- SO42- CO42- 含量 11260.5 359.1 375.8 1162.5 17699.3 2127.3 105.2 表 4 胶凝材料配比
Table 4. Ratio of cementing material
编号 配比/% 水灰比 矿渣 CaO 脱硫石膏 AR1 80 20 0 0.5 AR2 80 15 5 0.5 AR3 80 12.5 7.5 0.5 AR4 80 10 10 0.5 AR5 80 7.5 12.5 0.5 AR6 80 5 15 0.5 表 5 浸出液中重金属离子测试数据
Table 5. Test data of heavy metal ions in the leachate
样品 各重金属离子浓度/(mg·L-1) Hg Cr Pb Cd Cu As 国标 ≤0.0005 ≤0.1000 ≤0.0050 ≤0.0050 ≤0.0100 ≤0.0300 AR4 - 0.0030 0.0005 - 0.0040 - 注:-表示没有 表 6 AR4试块附着生物名录
Table 6. List of attached organisms on AR4 test block
中文名称 拉丁名称 类别 数量 孔石莼 Ulvapertusa 藻类-绿藻 6 环节藻 Champiaparvula 藻类-红藻 4 日本多管藻 Polysiphoniajaponicus 藻类-红藻 2 海葵 Anthopleurasp 刺胞动物 3 裂虫科一种 Syllidae 多毛类 1 褶牡蛎 Grassostreacf.Plicatula 软体动物 6 纹藤壶 B.amphitriteamphitrite 甲壳类 1 扇贝 Placopectamagellanicus 软体动物 3 太平洋牡蛎 Grassostreagigas 软体动物 1 紫贻贝 M.provincialis 软体动物 2 麦秆虫 Caprellasp 甲壳类 1 青岛板钩虾 S.qingdaoensis 甲壳类 2 长尾亮钩虾 Photislongicaudata 甲壳类 3 -
[1] Zheng X, Ji T, Easa S M, et al. Evaluating feasibility of using sea water curing for green artificial reef concrete[J]. Construction and Building Materials, 2018, 187:545-552. doi: 10.1016/j.conbuildmat.2018.07.140
[2] Chen C, Ji T, Zhuang Y, et al. Workability, mechanical properties and affinity of artificial reef concrete[J]. Construction and Building Materials, 2015, 98:227-236. doi: 10.1016/j.conbuildmat.2015.05.109
[3] 江艳娥, 陈丕茂, 林昭进, 等. 不同材料人工鱼礁生物诱集效果的比较[J]. 应用海洋学学报, 2013, 32(3):418-425. JIANG Y E, CHEN P M, LIN Z J, et al. Comparison of effectiveness of various artificial reef materials for fish attraction[J]. Journal of Applied Oceanography, 2013, 32(3):418-425.
[4] 于淼, 倪文, 陈勇, 等. 齐大山铁尾矿制作人工鱼礁材料的研究[J]. 金属矿山, 2012, 11:163-168. YU M, NI W, CHEN Y, et al. Investigation on artificial reefs materials made from Qidashan Iron Tailings[J]. Metal Mine, 2012, 11:163-168.
[5] 王震, 公丕海, 关长涛, 等. 青岛石雀滩海域人工鱼礁材料对附着生物群落结构的影响[J]. 渔业科学进展, 2019, 40(4):163-171. WANG Z, GONG P H, GUAN C T, et al. Effect of different artificial reefs on the community structure of organisms in Shique Beach of Qingdao[J]. Progress in Fishery Sciences, 2019, 40(4):163-171.
[6] 刘庆, 臧浩宇, 吴蓬, 等. NaOH激发矿渣胶凝材料的29Si NMR研究[J]. 硅酸盐通报, 2019, 38(2):553-558. LIU Q, ZANG H Y, WU P, et al. 29Si NMR Study of NaOH-Activated Slag Cementitious Materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2):553-558.
[7] 范剑明, 李娜, 冯鑫国. 粉煤灰/矿渣复合基沙土固化剂的制备及固化性能研究[J]. 矿产综合利用, 2019(6):105-109. FAN J M, LI N, FENG X G. Study on preparation and curing performance of fly ash/slag-based soil stabilizer[J]. Multipurpose Utilization of Mineral Resources, 2019(6):105-109.
[8] 陈勇, 田涛, 倪文, 等. 凝石胶凝材料作为人工鱼礁材料的可行性研究Ⅰ——海水的pH及其与水泥供试体的比较[J]. 大连海洋大学学报, 2012, 27(3):269-274. CHEN Y, TIAN T, NI W, et al. The feasibility of congealing stone used as artificial reef materials Ⅰ——compressive strength, and pH in immersed seawater reference to cement[J]. Journal Of Dalian Ocean University, 2012, 27(3):269-274.
[9] Xu Q, Ji T, Yang Z, et al. Steel rebar corrosion in artificial reef concrete with sulphoaluminate cement, sea water and marine sand[J]. Construction and Building Materials, 2019, 227:116688-116698. doi: 10.1016/j.conbuildmat.2019.116688
[10] Xu Q, Ji T, Yang Z, et al. Preliminary investigation of artificial reef concrete with sulphoaluminate cement, marine sand and sea water[J]. Construction and Building Materials, 2019, 211:837-846. doi: 10.1016/j.conbuildmat.2019.03.272
[11] 李田雨, 张玉梅, 刘小艳, 等. 海水海砂高性能海工混凝土力学及早期工作性研究[J]. 混凝土, 2019, 11:1-5. LI T Y, ZHANG Y M, LIU X Y, et al. Research on the preparation and durability of brine marine sand high performance concrete[J]. Concrete, 2019, 11:1-5.
[12] Dilnesa B Z, Wieland E, Lothenbach B, et al. Fe-containing phases in hydrated cements[J]. Cement and Concrete Research, 2014, 58:45-55. doi: 10.1016/j.cemconres.2013.12.012
[13] Santhanam M, Cohen M D, Olek J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars[J]. Cement and Concrete Research, 2002, 32(4):585-592. doi: 10.1016/S0008-8846(01)00727-X
[14] 吴蓬, 吕宪俊, 王俊祥, 等. 硬石膏对熟料激发矿渣水化反应的影响[J]. 中国矿业大学学报, 2016, 45(3):615-622. WU P, LV X J, WANG J X, et al. Effect of anhydrite on hydration of clinker activated slag cementing materials[J]. Journal of China University of Mining & Technology, 2016, 45(3):615-622.
-