-
摘要:
研究采用树脂吸附法从铜电解液中去除锑、铋杂质,考查树脂对锑、铋的吸附能力,溶液流速和温度对锑、铋吸附的影响,以及洗脱剂类型、温度和添加剂等因素对锑、铋洗脱的影响。结果表明:树脂对锑、铋的吸附能力相同;降低溶液流速和提高温度均可提升锑、铋的吸附率;动态吸附实验中,树脂对铜电解液中的Sb、Bi、Pb和Fe有吸附效果,平均吸附率分别为94.4%、97.3%、75.9%和28.3%;锑的洗脱效果主要受酸度和Cl-浓度影响,铋的洗脱效果主要受Cl-浓度影响;一定温度下,在高浓度盐酸溶液中加入少量硫脲有利于Sb(V)的洗脱。
Abstract:Resin Adsorption was adopted for removal of Sb and Bi in copper electrolyte. A series of investigations were done respectively on: adsorption capacity of resin for Sb and Bi, affects of solution flow rate and temperature for the adsorption of Sb and Bi, affects of eluent types, temperature and additives for the elution efficiency of Sb and Bi. The experimental results showed that, the resin has the same adsorption capacity for Sb and Bi, the adsorption could be improved by the solution flow rate reducing and the temperature increasing. In the dynamic adsorption test, the resin has adsorption effect on Sb, Bi, Pb and Fe in copper electrolyte, and the average adsorption rates are 94.4%, 97.3%, 75.9% and 28.3%, respectively. The elution of Sb was mainly influenced by the concentrations of H+ and Cl-. The elution of Bi was mainly influenced by the concentrations of Cl-. It was beneficial for the elution of Sb (V) by adding thiourea in high concentration HCl solution at a certain temperature.
-
Key words:
- Copper electrolyte /
- Sb /
- Bi /
- Adsorption /
- Purification
-
-
表 1 铜电解液原液组成/(g·L-1)
Table 1. Composition of copper electrolyte stock solution
Cu As Sb Bi Ni Fe H2SO4 45.54 12.71 0.18 0.26 12.61 0.21 178 表 2 静态吸附实验结果
Table 2. Experimental results of static adsorption
元素 实验 C0/
(mmol·L-1)Ce/
(mmol·L-1)E Q/
(mmol·g-1)D Sb 1 1.36 1.03 24.2% 0.263 256 2 1.36 0.81 40.0% 0.217 267 3 1.36 0.60 55.8% 0.151 252 4 1.36 0.27 80.0% 0.108 400 5 0.80 0.53 34.0% 0.108 206 Bi 1 1.34 1.04 22.5% 0.241 232 2 1.34 0.83 37.9% 0.203 244 3 1.34 0.61 54.6% 0.146 241 4 1.34 0.27 79.6% 0.107 391 5 0.89 0.58 34.6% 0.122 212 表 3 铜电解液吸附前后成分/(g·L-1)
Table 3. Composition of copper electrolyte before and after adsorption
成分 Cu As Sb Bi Ni Fe Pb Zn 原液 45.54 12.71 0.18 0.26 12.61 0.21 0.029 0.206 吸附后液1 45.23 12.56 0.011 0.008 12.55 0.147 0.007 0.204 吸附后液2 45.64 12.63 0.009 0.006 12.60 0.154 0.007 0.199 表 4 不同清洗剂条件下所得洗脱后液成分/(g·L-1)
Table 4. Composition of the eluate obtained under different cleaning agent conditions
清洗剂类型 Sb Bi Cu As Fe 水 2.97 5.45 0.21 0.83 0.18 稀硫酸 3.10 5.31 0.02 0.21 0.11 表 5 不同负载量实验的Sb和Bi树脂负载量/( mg·g-1)
Table 5. Sb and Bi resin loadings of different loading experiments
实验 Sb树脂负载量 Bi树脂负载量 1 14.4 24.5 2 8.7 14.2 表 6 Sb3+、Bi3+与Cl-的配合平衡常数
Table 6. Coordination equilibrium constants of Sb3+、Bi3+ and Cl-
平衡常数 lgβ1 lgβ2 lgβ3 lgβ4 lgβ5 lgβ6 Sb-Cl 2.26 3.49 4.18 4.72 4.70 4.10 Bi-Cl 2.35 4.40 5.45 6.65 7.29 7.09 -
[1] 朱祖泽, 贺家齐. 现代铜冶金学[M]. 北京: 科学出版社, 2003.
ZHU Z Z, HE J Q. Modern Copper Metallurgy [M]. Beijing: Science Press, 2003.
[2] 陈白珍, 仇勇海, 梅显芝, 等. 电积法脱铜脱砷的现状与进展[J]. 有色金属(冶炼部分), 1998(3):30-32. CHEN B Z, QIU Y H, MEI X Z, et al. Status and progress of copper and arsenic removal by electrowinning[J]. Nonferrous Metals (Extractive Metallurgy), 1998(3):30-32.
[3] 郑雅杰, 周文科, 彭映林, 等. 砷锑价态对铜电解液中砷锑铋脱除率的影响[J]. 中南大学学报(自然科学版), 2012, 43(3):821-826. ZHENG Y J, ZHOU W K, PENG Y L, et al. Influence of arsenic-antimony valence state on the removal rate of arsenic, antimony and bismuth in copper electrolyte[J]. Journal of Central South University(Natural Science Edition), 2012, 43(3):821-826.
[4] 李俊标, 李敬忠, 苏峰, 等. 萃取法回收铜电解液中锑铋研究与实践[J]. 铜业工程, 2017(6):47-51+7. LI J B, LI J Z, SU F, et al. Research and practice on recovery of antimony and bismuth from copper electrolyte by extraction method[J]. Copper Industry Engineering, 2017(6):47-51+7. doi: 10.3969/j.issn.1009-3842.2017.06.015
[5] SALARI K, HASHEMIAN S, BAEI M T. 采用不同吸附剂从铜电解液中除锑(英文)[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2):440-449. SALARI K, HASHEMIAN S, BAEI M T. Antimony removal from copper electrolytes using different adsorbents (English)[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2):440-449. doi: 10.1016/S1003-6326(17)60050-5
[6] 何万年, 赵旺盛, 何思郏. 交换吸附法净化铜电解液中的锑和铋研究[J]. 有色金属(冶炼部分), 1998(3):27-29+36. HE W N, ZHAO W S, HE S J. Study on purification of antimony and bismuth in copper electrolyte by exchange adsorption method[J]. Nonferrous Metals (Extractive Metallurgy), 1998(3):27-29+36.
[7] 程霞霞. 树脂除杂技术在铜电解工业化应用研究[J]. 有色金属(冶炼部分), 2018(2):46-49. CHENG X X. Research on industrial application of resin impurity removal technology in copper electrolysis[J]. Nonferrous Metals (Extractive Metallurgy), 2018(2):46-49.
[8] 张子悦. 用氨基膦酸树脂从铜电解液中除锑[J]. 湿法冶金, 2011, 30(1):63. ZHANG Z Y. Antimony removal from copper electrolyte with aminophosphonic acid resin[J]. Hydrometallurgy, 2011, 30(1):63. doi: 10.13355/j.cnki.sfyj.2011.01.020
[9] 唐谟堂. 三氯化铋水解体系的热力学研究[J]. 中南矿冶学院学报, 1993(1):45-51. TANG M T. Thermodynamic study on the hydrolysis system of bismuth trichloride[J]. Journal of Zhongnan Institute of Mining and Metallurgy, 1993(1):45-51.
[10] 廖婷. 铜转炉白烟灰湿法提取铋的工艺研究[D]. 长沙: 中南大学, 2013.
LIAO T. Research on wet extraction of bismuth from copper converter white soot[D]. Changsha: Central South University, 2013.
[11] 杜新玲. Sb~(3+)-Cl--H2O体系中三氯化锑水解平衡的研究[J]. 中国有色冶金, 2012, 41(5):75-79. DU X L. Study on hydrolysis equilibrium of antimony trichloride in Sb~(3+)-Cl--H2O system[J]. China Nonferrous Metals, 2012, 41(5):75-79. doi: 10.3969/j.issn.1672-6103.2012.05.020
[12] 徐振鑫. 铜阳极泥复合酸浸砷锑铋工艺及锑铋水解机理研究[D]. 赣州: 江西理工大学, 2020.
XU Z X. Research on the composite acid leaching of arsenic, antimony and bismuth of copper anode slime and the hydrolysis mechanism of antimony and bismuth[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
[13] 鲁道荣, 李学良, 林建新. 砷锑铋对阴极铜沉积过程的影响[J]. 应用化学, 1998(2):59-62. LU D R, LI X L, LIN J X. Influence of arsenic, antimony and bismuth on cathode copper deposition process[J]. Applied Chemistry, 1998(2):59-62.
-