低品位高硅铝土矿静态焙烧溶出

马长喜, 夏飞龙, 张姗姗, 张强. 低品位高硅铝土矿静态焙烧溶出[J]. 矿产综合利用, 2023, 44(2): 7-12. doi: 10.3969/j.issn.1000-6532.2023.02.002
引用本文: 马长喜, 夏飞龙, 张姗姗, 张强. 低品位高硅铝土矿静态焙烧溶出[J]. 矿产综合利用, 2023, 44(2): 7-12. doi: 10.3969/j.issn.1000-6532.2023.02.002
Ma Changxi, Xia Feilong, Zhang Shanshan, Zhang Qiang. Study on Digestion of Low Grade High Silica Bauxite by Static Roasting[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 7-12. doi: 10.3969/j.issn.1000-6532.2023.02.002
Citation: Ma Changxi, Xia Feilong, Zhang Shanshan, Zhang Qiang. Study on Digestion of Low Grade High Silica Bauxite by Static Roasting[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 7-12. doi: 10.3969/j.issn.1000-6532.2023.02.002

低品位高硅铝土矿静态焙烧溶出

  • 基金项目: 国家自然科学基金 低品位高硫铝土矿闪速焙烧脱硫与碱溶脱硅的调制机制(51774079);加压酸浸锰烟尘回收锰过程选择性强化机理研究(51764007)
详细信息
    作者简介: 马长喜(1988-),男,实验师,主要研究方向为矿物加工及资源综合利用
    通讯作者: 夏飞龙(1993-),男,硕士,助理工程师,主要研究方向为湿法冶金
  • 中图分类号: TD98

Study on Digestion of Low Grade High Silica Bauxite by Static Roasting

More Information
  • 针对低品位高硅铝土矿溶出性能差,本文采用低温静态焙烧溶出工艺,考查焙烧温度、焙烧时间及矿石粒径对氧化铝溶出效果的影响。其结果表明:矿石含铝主要物相为一水软铝石、一水硬铝,其在焙烧过程中分解温度为515 ℃。经过焙烧后,矿石结构变为疏松孔洞及沟壑结构。在焙烧温度600 ℃、焙烧时间90 s、矿石粒径150 μm条件下,氧化铝相对溶出率最优,较原矿提高7.57%达到了97.88%。焙烧矿氧化铝溶出限制性环节为内扩散,其表观活化能为44.72 kJ/mol。

  • 加载中
  • 图 1  焙烧温度对氧化铝溶出的影响

    Figure 1. 

    图 2  焙烧时间对氧化铝溶出的影响

    Figure 2. 

    图 3  焙烧时间对氧化铝溶出的影响

    Figure 3. 

    图 4  原矿XRD

    Figure 4. 

    图 5  原矿TG-DTA曲线

    Figure 5. 

    图 6  样品焙烧前后的SEM

    Figure 6. 

    图 7  1-(1-α)1/3=kt模型动力学曲线

    Figure 7. 

    图 8  1-2/3α-(1-α)2/3=kt模型动力学曲线

    Figure 8. 

    表 1  铝土矿化学成分/%

    Table 1.  Chemical composition of bauxite

    Al2O3TFe2O3SiO2TiO2TSCaOMgOK2ONa2OLOSS总计
    62.834.1516.422.371.200.350.260.520.1111.2399.44
    下载: 导出CSV

    表 2  氧化铝溶出率与时间的关系

    Table 2.  Data of alumina digestion rate versus time

    时间/min原矿氧化铝溶出率%焙烧矿溶出率%
    260 ℃270 ℃280 ℃260 ℃270 ℃280 ℃
    107.8658.359.8549.8510.6511.95
    3038.4541.0342.3136.2544.3249.79
    4556.3858.6558.3558.6563.5467.17
    6061.9765.3467.160.3565.6571.91
    7066.3768.3469.8263.2569.0872.09
    下载: 导出CSV
  • [1]

    吴鸿飞, 夏飞龙, 李军旗, 等. 低品位高硫铝土矿静态焙烧脱硫及溶出性能[J]. 中南大学学报(自然科学版), 2020, 51(5):1163-1173. WU H F, XIA F L, LI J Q, et al. Static roasting desulfurization and dissolution properties of low-grade high-sulfur bauxite[J]. Journal of Central South University(Natural Science Edition), 2020, 51(5):1163-1173.

    [2]

    WANG Shiqiang, ZHANG Zhaohui, WANG Zhihui. Bryophyte communities as biomonitors of environmental fact[J]. Science of the Total Environment, 2015, 538:270-278.

    [3]

    Guozhi Lu, Tingan Zhang, Fangfang Guo, et al. Clean and efficient utilization of low-grade high-iron sedimentary bauxite via calcification-carbonation method[J]. Hydrometallurgy, 2019, 187.

    [4]

    Hong-fei WU, Chao-yi CHEN, Jun-qi LI, et al. Digestion mechanism and crystal simulation of roasted low-grade high-sulfur bauxite[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6):1662-1673. doi: 10.1016/S1003-6326(20)65328-6

    [5]

    WU Y, PAN X L, HAN Y J, et al. Digestion kinetics and removal mechanism of kaolinite in diasporic bauxite in alkali solution at atmospheric pressure[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(12).

    [6]

    高慧, 赵东亮. 石灰质量对拜耳法氧化铝生产过程的影响[J]. 轻金属, 2020(8):24-26. GAO H, ZHAO D L. Influence of lime quality on alumina production process by Bayer process[J]. Light Metals, 2020(8):24-26. doi: 10.13662/j.cnki.qjs.2020.08.006

    [7]

    刘永轶, 李其贵, 刘战伟. 预脱硅及石灰配比对铝土矿溶出性能的影响[J]. 有色金属(冶炼部分), 2020(6):30-36. LI Y Y, LI Q G, LIU Z W. Effects of pre-desilicization and lime ratio on the dissolution properties of bauxite[J]. Nonferrous Metals (Extractive Metallurgy), 2020(6):30-36.

    [8]

    刘琼霞, 单志强. 广西某铝土矿Bayer-CaO法溶出实验[J]. 矿产综合利用, 2019(3):27-30. LIU Q X, SHAN Z Q. Tests on the Bayer-CaO dissolving method for the bauxite from Guangxi Taiping mining area[J]. Multipurpose Utilization of Mineral Resources, 2019(3):27-30. doi: 10.3969/j.issn.1000-6532.2019.03.006

    [9]

    刘佳囡, 曹诗圆, 程颖, 等. 铝土矿中铝、铁和硅有价组分的综合利用研究[J]. 矿产综合利用, 2019(4):87-90. LIU J N, CAO S Y, CHENG Y, et al. Research on comprehensive utilization of aluminium, iron and silicon from bauxite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):87-90. doi: 10.3969/j.issn.1000-6532.2019.04.018

    [10]

    马智敏, 陈兴华, 王玉才, 等. 铝土矿选矿脱硅技术研究现状及前景展望[J]. 矿产综合利用, 2015(1):1-6,13. MA Z M, CHEN X H, WANG Y C, et al. Research status and prospect of bauxite beneficiation and desilication technology[J]. Multipurpose Utilization of Mineral Resources, 2015(1):1-6,13. doi: 10.3969/j.issn.1000-6532.2015.01.001

    [11]

    吴鸿飞, 夏飞龙, 李军旗, 等. 低品位高硫铝土矿脱硅精矿溶出及微观结构演变[J]. 中南大学学报(自然科学版), 2019, 50(9):2074-2083. WU H F, XIA F L, LI J Q, et al. Dissolution and microstructure evolution of desilication concentrates from low-grade high-sulfur bauxite[J]. Journal of Central South University (Natural Science Edition), 2019, 50(9):2074-2083.

    [12]

    刘学飞, 王庆飞, 张起钻, 等. 广西靖西县新圩铝土矿Ⅶ号矿体矿石热分析[J]. 矿物岩石, 2008, 28(4):53-58. LIU X F, WANG Q F, ZHANG Q Z, et al. Thermal analysis of ore body No. VII in Xinwei Bauxite Mine, Jingxi County, Guangxi[J]. Mineral Rock, 2008, 28(4):53-58. doi: 10.3969/j.issn.1001-6872.2008.04.010

    [13]

    马冬阳, 张梅, 郭敏. 焙烧对铝土矿尾矿相转变, 失重率及平均粒径与比表面积的影响[J]. 硅酸盐通报, 2014, 33(9):2153-2157. MA D Y, ZHANG M, GUO M. Effects of roasting on phase transformation, weight loss rate, average particle size and specific surface area of bauxite tailings[J]. Bulletin of Silicate, 2014, 33(9):2153-2157.

    [14]

    杨会宾, 涂赣峰, 潘晓林, 等. 高铁三水铝石矿溶出动力学[J]. 有色金属(冶炼部分), 2016(2):18-22. YANG H B, TU G F, PAN X L, et al. Dissolution kinetics of high-speed iron gibbsite ore[J]. Nonferrous Metals (Extractive Metallurgy), 2016(2):18-22.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  721
  • PDF下载数:  266
  • 施引文献:  0
出版历程
收稿日期:  2021-02-25
刊出日期:  2023-04-25

目录