低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化

李勇辉, 先元华, 陈德霞, 钟意, 吴修洁. 低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化[J]. 矿产综合利用, 2023, 44(3): 78-81, 87. doi: 10.3969/j.issn.1000-6532.2023.03.013
引用本文: 李勇辉, 先元华, 陈德霞, 钟意, 吴修洁. 低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化[J]. 矿产综合利用, 2023, 44(3): 78-81, 87. doi: 10.3969/j.issn.1000-6532.2023.03.013
Li Yonghui, Xian Yuanhua, Chen Dexia, Zhong Yi, Wu Xiujie. Process Optimization on Preparation of Composite Portland Cement with Low-grade Pyrite Cinder[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 78-81, 87. doi: 10.3969/j.issn.1000-6532.2023.03.013
Citation: Li Yonghui, Xian Yuanhua, Chen Dexia, Zhong Yi, Wu Xiujie. Process Optimization on Preparation of Composite Portland Cement with Low-grade Pyrite Cinder[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 78-81, 87. doi: 10.3969/j.issn.1000-6532.2023.03.013

低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化

  • 基金项目: 工业固态废弃物土木工程综合开发利用四川省高校重点实验室开放基金项目(SC-FQWLY201710)
详细信息
    作者简介: 李勇辉(1984-),男,硕士,工程师。研究方向为污染控制与资源化利用
  • 中图分类号: TD989

Process Optimization on Preparation of Composite Portland Cement with Low-grade Pyrite Cinder

  • 这是一篇矿物材料领域的论文。为因地制宜寻求低品位硫铁矿烧渣的综合利用途径,解决硫铁矿烧渣大量堆存的问题,并缓解土壤及水质污染,进行了低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化研究。利用硫铁矿烧渣具有铁含量高的特点,作为外加剂,将其掺入水泥熟料、脱硫石膏、粉煤灰等,混合磨细,制备复合硅酸盐水泥,以强度为指标,确定适宜的硫铁矿烧渣掺量。通过对不同硫铁矿烧渣掺量制备的水泥试块进行物理性能检测,利用正交实验对工艺条件进行优化。结果表明,较佳工艺条件为,水泥熟料掺量为55%,钙硅比为2.5,灰渣比为1,水灰比为0.4,在此条件下,实验制得的水泥28 d抗压强度为43.9 MPa,强度等级为42.5。

  • 加载中
  • 表 1  实验材料化学组成/%

    Table 1.  Result of analysis for chemical composition of materials in experiment

    名称Al2O3CaOFe2O3K2OMgONa2OP2O5SiO2SO3TiO2
    硫铁矿烧渣35.504.737.630.260.240.130.2043.652.514.43
    水泥熟料6.3661.933.581.131.360.280.0922.971.190.31
    脱硫石膏0.2348.900.210.041.240.070.012.5446.400.02
    粉煤灰21.905.3216.401.510.650.430.1148.701.992.52
    石灰石粉2.5351.250.430.220.090.150.014.510.010.09
    下载: 导出CSV

    表 2  因素水平

    Table 2.  Factors and levels

    水平(A)
    水泥熟料掺量/%
    (B)
    钙硅比
    (C)
    灰渣比
    (D)
    水灰比
    1551.530.3
    2652.020.4
    3752.510.5
    下载: 导出CSV

    表 3  实验数据

    Table 3.  Experimental data

    实验号列号28 d抗压
    强度/MPa
    12345678910111213
    AB(A×B)1(A×B)2C(B×D)2空列(B×C)1D空列(B×C)2(B×D)1空列
    1551.51131110.3111135.8
    2551.51122220.4222239.9
    3551.51113330.5333337.3
    45522231120.4233343.1
    55522222230.5311142.2
    65522213310.3122238.1
    7552.53331130.5322243.8
    8552.53322210.3133342.5
    9552.53313320.4211143.9
    10651.52332310.4312341.4
    11651.52323120.5123140.3
    12651.52311230.3231237.9
    136523132320.5131246.4
    146523123130.3212344.5
    156523111210.4323145.1
    16652.51232330.3223145.5
    17652.51223110.4331245.8
    18652.51211220.5112344.2
    19751.53233210.5213241.7
    20751.53221320.3321340.3
    21751.53212130.4132142.1
    227521333220.3332146.9
    237521321330.4113248.5
    247521312110.5221347.4
    25752.52133230.4121346.9
    26752.52121310.5232145.9
    27752.52112120.3313244.8
    下载: 导出CSV

    表 4  实验数据直观分析

    Table 4.  Intuitionistic analysis for experimental data

    水平ABCD(A×B)1(A×B)2备注
    K1366.60356.70391.50376.30391.30386.60其他交
    互作用
    影响相
    对较小
    可忽略
    K2391.10402.20389.90396.70380.60383.00
    K3404.50403.30380.80389.20390.30392.60
    k140.7339.6343.5041.8143.4842.96
    k243.4644.6943.3244.0842.2942.56
    k344.9444.8142.3143.2443.3743.62
    极差R4.215.181.192.271.191.07
    因素主→次B>A>D>(A×B)>C
    优方案A3B3C1D2
    下载: 导出CSV

    表 5  (A×B)交互作用的判别

    Table 5.  Discrimination for Interaction of A and B

    A1A2A3
    B137.6747.7344.83
    B239.8741.1346.37
    B341.3743.8743.40
    下载: 导出CSV

    表 6  实验数据方差分析

    Table 6.  Analysis of variance for experimental data

    差异源SSjdfjMSjFj显著性备注[15]
    A82.0822244.0248170.48**F0.05(2,6)=5.14
    F0.01(2,6)=10.92
    F0.05(4,6)=4.53
    F0.01(4,6)=9.12
    B157.1489273.5559326.39**
    C7.402223.451515.37**
    D23.6600211.651549.14**
    A×B12.988942.979813.49**
    B×C2.395640.59892.49
    B×D4.204441.05114.37
    误差e1.444460.2407
    总和291.326726
    下载: 导出CSV

    表 7  重复性实验数据

    Table 7.  Experimental data at different time

    1#2#3#4#5#6#
    28 d抗压强度/MPa43.943.943.743.843.943.9
    43.943.643.943.743.843.7
    43.743.843.843.843.944.0
    标准偏差0.10
    相对标准偏差/ %0.24
    置信区间(α=0.95)/MPa43.82±0.05
    下载: 导出CSV
  • [1]

    叶树滋. 硫酸生产工艺[M]. 北京: 化学工业出版社, 2011: 225-226.

    YE S Z. Production technology of sulfuric acid[M]. Beijing: Chemical Industry Press Co. , Ltd, 2011: 225-226.

    [2]

    国家环境保护局. 工业污染治理技术丛书 固体废弃物卷[M]. 北京: 中国环境科学出版社, 1991: 262-273.

    Ministry of Ecology and Environment of the People's Republic of China. Technical series on industrial pollution control, solid waste part[M]. Beijing: China Environment Pubishing Group, 1991: 262-273.

    [3]

    李崇. 2018年中国硫酸行业生产运行情况[J]. 硫酸工业, 2019(5):11-14,23. LI C. 2018 Operational status of sulfuric acid industry[J]. Sulphuric acid industry, 2019(5):11-14,23. doi: 10.3969/j.issn.1002-1507.2019.05.003

    LI C. 2018 Operational status of sulfuric acid industry[J]. Sulphuric acid industry , 2019, (5): 11-14, 23. doi: 10.3969/j.issn.1002-1507.2019.05.003

    [4]

    生态环境部. 2019年全国大、中城市固体废物污染环境防治年报[OL]. 中华人民共和国生态环境部. 2019-12-31. http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz.

    Ministry of Ecology and Environment of the People's Republic of China. 2019 statistical bulletin on prevention and control of solid waste pollution in large and medium cities. 2019-12-31. http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz.

    [5]

    田锋. 硫铁矿烧渣综合利用实验研究[J]. 矿产综合利用, 2010(1):38-42. TIAN F. Experimental research on comprehensive utilization of roasted pyrite[J]. Multipurpose Utilization of Mineral Resources, 2010(1):38-42. doi: 10.3969/j.issn.1000-6532.2010.01.011

    TIAN F. Experimental research on comprehensive utilization of roasted pyrite[J]. Multipurpose Utilization of Mineral Resources, 2010, (1): 38-42. doi: 10.3969/j.issn.1000-6532.2010.01.011

    [6]

    黄长春. 从硫铁矿烧渣回收铁精粉的研究[D]. 厦门: 厦门大学, 2013.

    HUANG C C. Study on recovering iron concentrate from pyrite slag [D]. Xiamen: Xiamen University, 2013.

    [7]

    傅开彬, 焦宇, 徐信, 等. 山东某硫铁矿烧渣硫酸浸出液制备铁红工艺研究[J]. 应用化工, 2018, 47(2):293-295. FU K B, JIAO Y, XU X, et al. Preparation of iron oxide red from sulfuric acid solution of a pyrite cinder from Shandong Province[J]. Applied Chemical Industry, 2018, 47(2):293-295. doi: 10.3969/j.issn.1671-3206.2018.02.021

    FU K B, JIAO Y, XU X, et al. Preparation of iron oxide red from sulfuric acid solution of a pyrite cinder from Shandong Province[J]. Applied Chemical Industry, 2018, 47(2): 293-295. doi: 10.3969/j.issn.1671-3206.2018.02.021

    [8]

    陈吉春, 陈永亮. 硫铁矿烧渣还原酸浸制取硫酸亚铁[J]. 矿产综合利用, 2004(3):42-45. CHEN J C, CHEN Y L. The preparation of ferrous sulfate from pyrite cinder by reduction roasting method[J]. Multipurpose Utilization of Mineral Resources, 2004(3):42-45. doi: 10.3969/j.issn.1000-6532.2004.03.011

    CHEN J C , CHEN Y L. The preparation of ferrous sulfate from pyrite cinder by reduction roasting method[J]. Multipurpose Utilization of Mineral Resources, 2004, (3): 42-45. doi: 10.3969/j.issn.1000-6532.2004.03.011

    [9]

    姜凌, 董亚妮, 田萍. 用硫铁矿烧渣制取聚合硫酸铁的实验研究[J]. 环境科学与技术, 2010, 33(8):148-151,166. JIANG L, DONG Y N, TIAN P. Preparation of polyferric sulfate by pyrite cinder[J]. Environmental Science & Technology, 2010, 33(8):148-151,166.

    JIANG L, DONG Y N, TIAN P. Preparation of polyferric sulfate by pyrite cinder[J]. Environmental Science& Technology, 2010, 33(8): 148-151, 166.

    [10]

    史继斌, 李树安, 徐蕙. 混合酸溶法浸取硫铁矿烧渣制聚硅氯化硫酸铁[J]. 化工矿物与加工, 2007(11):17-20. SHI J B, LI S A, XU H. Preparation of poly-silicic-ferric chloride sulfate from leaching pyrite cinder with mixed acid dissolution method[J]. Industrial minerals & processing, 2007(11):17-20. doi: 10.3969/j.issn.1008-7524.2007.11.005

    SHI J B, LI S A, XU H. Preparation of poly-silicic-ferric chloride sulfate from leaching pyrite cinder with mixed acid dissolution method[J]. Industrial minerals & processing, 2007, (11): 17-20. doi: 10.3969/j.issn.1008-7524.2007.11.005

    [11]

    赵静立. 硫铁矿烧渣为原料合成磷酸铁锂的工艺研究[D]. 武汉: 华中科技大学, 2016.

    ZHAO J L. Preparation of LiFePO4 from pyrite cinder using hydrometallurgical and hydrothermal process[D]. Wuhan: Huazhong University of Science and Technology, 2016.

    [12]

    常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银[J]. 有色金属(冶炼部分), 2015(6):46-49. CHANG Y C, XU X H, WANG Y. Arsenic removal and recovery of gold and silver by chloridizing roasting from high arsenic-bearing pyrite cinder[J]. Nonferrous Metals(Extractive Metallurgy), 2015(6):46-49.

    CHANG Y C, XU X H, WANG Y. Arsenic removal and recovery of gold and silver by chloridizing roasting from high arsenic-bearing pyrite cinder[J]. Nonferrous Metals(Extractive Metallurgy), 2015, (6): 46-49.

    [13]

    范晓正, 严云, 胡志华, 等. 低品位硫铁矿烧渣制备吸波陶瓷的研究[J]. 陶瓷学报, 2015, 36(6):634-639. FAN X Z, YAN Y, HU Z H, et al. Preparation technology of microwave absorbing ceramics with low-grade pyrite cinder[J]. Journal of Ceramics, 2015, 36(6):634-639. doi: 10.13957/j.cnki.tcxb.2015.06.011

    FAN X Z, YAN Y, HU Z H, et al. Preparation technology of microwave absorbing ceramics with low-grade pyrite cinder[J]. Journal of Ceramics, 2015, 36(6): 634-639. doi: 10.13957/j.cnki.tcxb.2015.06.011

    [14]

    谢鹏, 黄阳, 王凡非, 等. 高岭石型硫铁矿烧渣超细粉作高强高性能混凝土用矿物外加剂的性能研究[J]. 非金属矿, 2014, 37(3):22-24. XIE P, HUANG Y, WANG F F, et al. Research on properties of ultrafine kaolinite-pyrite cinder as mineral admixture of high performance concrete[J]. Non-Metallic Mines, 2014, 37(3):22-24. doi: 10.3969/j.issn.1000-8098.2014.03.008

    XIE P, HUANG Y, Wang F F, et al. Research on properties of ultrafine kaolinite-pyrite cinder as mineral admixture of high performance concrete[J]. Non-Metallic Mines, 2014, 37(3): 22-24. doi: 10.3969/j.issn.1000-8098.2014.03.008

    [15]

    生态环境部. 硫酸工业污染防治技术政策[OL]. 中华人民共和国生态环境部. 2013-05-24. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/wrfzjszc/201306/t20130603_253124.shtml

    Ministry of Ecology and Environment of the People's Republic of China. Technical policy for pollution control in sulphuric acid industry[OL]. Ministry of Ecology and Environment of the People's Republic of China. 2013-05-24. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/wrfzjszc/201306/t20130603_253124.shtml.

  • 加载中

(7)

计量
  • 文章访问数:  1148
  • PDF下载数:  186
  • 施引文献:  0
出版历程
收稿日期:  2021-03-21
刊出日期:  2023-06-25

目录