Process Optimization on Preparation of Composite Portland Cement with Low-grade Pyrite Cinder
-
摘要:
这是一篇矿物材料领域的论文。为因地制宜寻求低品位硫铁矿烧渣的综合利用途径,解决硫铁矿烧渣大量堆存的问题,并缓解土壤及水质污染,进行了低品位硫铁矿烧渣生产复合硅酸盐水泥工艺优化研究。利用硫铁矿烧渣具有铁含量高的特点,作为外加剂,将其掺入水泥熟料、脱硫石膏、粉煤灰等,混合磨细,制备复合硅酸盐水泥,以强度为指标,确定适宜的硫铁矿烧渣掺量。通过对不同硫铁矿烧渣掺量制备的水泥试块进行物理性能检测,利用正交实验对工艺条件进行优化。结果表明,较佳工艺条件为,水泥熟料掺量为55%,钙硅比为2.5,灰渣比为1,水灰比为0.4,在此条件下,实验制得的水泥28 d抗压强度为43.9 MPa,强度等级为42.5。
Abstract:This is a paper in the field of mineral materials. In order to seek for a new feasible way to utilize low-grade pyrite cinder under local conditions, to solve bottleneck problems of large reserves, and to relieve soil and water pollution, a research on the process optimization on preparation of composite portland cement with low-grade pyrite cinder was conducted. Pyrite cinder as a special kind of industrial solid waste with higher iron content, was used as additive, and was incorporated with portland cement clinker, flue gas desulfurization gypsum and fly ash to prepare composite portland cement. Their efficacy was compared by testing the compressive strength and flexural strength of composite portland cement, based on the analysis of physical indices, and then orthogonal tests were carried out to optimize the preparation. The results showed that the optimum preparation conditions were: mass fraction of portland cement clinker of 55%, Ca to Si ratio of 2.5, fly ash to pyrite cinder ratio of 1.0, and water to material ratio of 0.4. And then, 28-day compressive strength was 43.9 MPa. According to the national standard named as Common Portland Cement, the cement mark can reach the level of P·C 42.5.
-
-
表 1 实验材料化学组成/%
Table 1. Result of analysis for chemical composition of materials in experiment
名称 Al2O3 CaO Fe2O3 K2O MgO Na2O P2O5 SiO2 SO3 TiO2 硫铁矿烧渣 35.50 4.73 7.63 0.26 0.24 0.13 0.20 43.65 2.51 4.43 水泥熟料 6.36 61.93 3.58 1.13 1.36 0.28 0.09 22.97 1.19 0.31 脱硫石膏 0.23 48.90 0.21 0.04 1.24 0.07 0.01 2.54 46.40 0.02 粉煤灰 21.90 5.32 16.40 1.51 0.65 0.43 0.11 48.70 1.99 2.52 石灰石粉 2.53 51.25 0.43 0.22 0.09 0.15 0.01 4.51 0.01 0.09 表 2 因素水平
Table 2. Factors and levels
水平 (A)
水泥熟料掺量/%(B)
钙硅比(C)
灰渣比(D)
水灰比1 55 1.5 3 0.3 2 65 2.0 2 0.4 3 75 2.5 1 0.5 表 3 实验数据
Table 3. Experimental data
实验号 列号 28 d抗压
强度/MPa1 2 3 4 5 6 7 8 9 10 11 12 13 A B (A×B)1 (A×B)2 C (B×D)2 空列 (B×C)1 D 空列 (B×C)2 (B×D)1 空列 1 55 1.5 1 1 3 1 1 1 0.3 1 1 1 1 35.8 2 55 1.5 1 1 2 2 2 2 0.4 2 2 2 2 39.9 3 55 1.5 1 1 1 3 3 3 0.5 3 3 3 3 37.3 4 55 2 2 2 3 1 1 2 0.4 2 3 3 3 43.1 5 55 2 2 2 2 2 2 3 0.5 3 1 1 1 42.2 6 55 2 2 2 1 3 3 1 0.3 1 2 2 2 38.1 7 55 2.5 3 3 3 1 1 3 0.5 3 2 2 2 43.8 8 55 2.5 3 3 2 2 2 1 0.3 1 3 3 3 42.5 9 55 2.5 3 3 1 3 3 2 0.4 2 1 1 1 43.9 10 65 1.5 2 3 3 2 3 1 0.4 3 1 2 3 41.4 11 65 1.5 2 3 2 3 1 2 0.5 1 2 3 1 40.3 12 65 1.5 2 3 1 1 2 3 0.3 2 3 1 2 37.9 13 65 2 3 1 3 2 3 2 0.5 1 3 1 2 46.4 14 65 2 3 1 2 3 1 3 0.3 2 1 2 3 44.5 15 65 2 3 1 1 1 2 1 0.4 3 2 3 1 45.1 16 65 2.5 1 2 3 2 3 3 0.3 2 2 3 1 45.5 17 65 2.5 1 2 2 3 1 1 0.4 3 3 1 2 45.8 18 65 2.5 1 2 1 1 2 2 0.5 1 1 2 3 44.2 19 75 1.5 3 2 3 3 2 1 0.5 2 1 3 2 41.7 20 75 1.5 3 2 2 1 3 2 0.3 3 2 1 3 40.3 21 75 1.5 3 2 1 2 1 3 0.4 1 3 2 1 42.1 22 75 2 1 3 3 3 2 2 0.3 3 3 2 1 46.9 23 75 2 1 3 2 1 3 3 0.4 1 1 3 2 48.5 24 75 2 1 3 1 2 1 1 0.5 2 2 1 3 47.4 25 75 2.5 2 1 3 3 2 3 0.4 1 2 1 3 46.9 26 75 2.5 2 1 2 1 3 1 0.5 2 3 2 1 45.9 27 75 2.5 2 1 1 2 1 2 0.3 3 1 3 2 44.8 表 4 实验数据直观分析
Table 4. Intuitionistic analysis for experimental data
水平 A B C D (A×B)1 (A×B)2 备注 K1 366.60 356.70 391.50 376.30 391.30 386.60 其他交
互作用
影响相
对较小
可忽略K2 391.10 402.20 389.90 396.70 380.60 383.00 K3 404.50 403.30 380.80 389.20 390.30 392.60 k1 40.73 39.63 43.50 41.81 43.48 42.96 k2 43.46 44.69 43.32 44.08 42.29 42.56 k3 44.94 44.81 42.31 43.24 43.37 43.62 极差R 4.21 5.18 1.19 2.27 1.19 1.07 因素主→次 B>A>D>(A×B)>C 优方案 A3B3C1D2 表 5 (A×B)交互作用的判别
Table 5. Discrimination for Interaction of A and B
A1 A2 A3 B1 37.67 47.73 44.83 B2 39.87 41.13 46.37 B3 41.37 43.87 43.40 表 6 实验数据方差分析
Table 6. Analysis of variance for experimental data
差异源 SSj dfj MSj Fj 显著性 备注[15] A 82.0822 2 44.0248 170.48 ** F0.05(2,6)=5.14
F0.01(2,6)=10.92
F0.05(4,6)=4.53
F0.01(4,6)=9.12B 157.1489 2 73.5559 326.39 ** C 7.4022 2 3.4515 15.37 ** D 23.6600 2 11.6515 49.14 ** A×B 12.9889 4 2.9798 13.49 ** B×C 2.3956 4 0.5989 2.49 B×D 4.2044 4 1.0511 4.37 误差e 1.4444 6 0.2407 总和 291.3267 26 表 7 重复性实验数据
Table 7. Experimental data at different time
1# 2# 3# 4# 5# 6# 28 d抗压强度/MPa 43.9 43.9 43.7 43.8 43.9 43.9 43.9 43.6 43.9 43.7 43.8 43.7 43.7 43.8 43.8 43.8 43.9 44.0 标准偏差 0.10 相对标准偏差/ % 0.24 置信区间(α=0.95)/MPa 43.82±0.05 -
[1] 叶树滋. 硫酸生产工艺[M]. 北京: 化学工业出版社, 2011: 225-226.
YE S Z. Production technology of sulfuric acid[M]. Beijing: Chemical Industry Press Co. , Ltd, 2011: 225-226.
[2] 国家环境保护局. 工业污染治理技术丛书 固体废弃物卷[M]. 北京: 中国环境科学出版社, 1991: 262-273.
Ministry of Ecology and Environment of the People's Republic of China. Technical series on industrial pollution control, solid waste part[M]. Beijing: China Environment Pubishing Group, 1991: 262-273.
[3] 李崇. 2018年中国硫酸行业生产运行情况[J]. 硫酸工业, 2019(5):11-14,23. LI C. 2018 Operational status of sulfuric acid industry[J]. Sulphuric acid industry, 2019(5):11-14,23. doi: 10.3969/j.issn.1002-1507.2019.05.003
LI C. 2018 Operational status of sulfuric acid industry[J]. Sulphuric acid industry , 2019, (5): 11-14, 23. doi: 10.3969/j.issn.1002-1507.2019.05.003
[4] 生态环境部. 2019年全国大、中城市固体废物污染环境防治年报[OL]. 中华人民共和国生态环境部. 2019-12-31. http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz.
Ministry of Ecology and Environment of the People's Republic of China. 2019 statistical bulletin on prevention and control of solid waste pollution in large and medium cities. 2019-12-31. http://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz.
[5] 田锋. 硫铁矿烧渣综合利用实验研究[J]. 矿产综合利用, 2010(1):38-42. TIAN F. Experimental research on comprehensive utilization of roasted pyrite[J]. Multipurpose Utilization of Mineral Resources, 2010(1):38-42. doi: 10.3969/j.issn.1000-6532.2010.01.011
TIAN F. Experimental research on comprehensive utilization of roasted pyrite[J]. Multipurpose Utilization of Mineral Resources, 2010, (1): 38-42. doi: 10.3969/j.issn.1000-6532.2010.01.011
[6] 黄长春. 从硫铁矿烧渣回收铁精粉的研究[D]. 厦门: 厦门大学, 2013.
HUANG C C. Study on recovering iron concentrate from pyrite slag [D]. Xiamen: Xiamen University, 2013.
[7] 傅开彬, 焦宇, 徐信, 等. 山东某硫铁矿烧渣硫酸浸出液制备铁红工艺研究[J]. 应用化工, 2018, 47(2):293-295. FU K B, JIAO Y, XU X, et al. Preparation of iron oxide red from sulfuric acid solution of a pyrite cinder from Shandong Province[J]. Applied Chemical Industry, 2018, 47(2):293-295. doi: 10.3969/j.issn.1671-3206.2018.02.021
FU K B, JIAO Y, XU X, et al. Preparation of iron oxide red from sulfuric acid solution of a pyrite cinder from Shandong Province[J]. Applied Chemical Industry, 2018, 47(2): 293-295. doi: 10.3969/j.issn.1671-3206.2018.02.021
[8] 陈吉春, 陈永亮. 硫铁矿烧渣还原酸浸制取硫酸亚铁[J]. 矿产综合利用, 2004(3):42-45. CHEN J C, CHEN Y L. The preparation of ferrous sulfate from pyrite cinder by reduction roasting method[J]. Multipurpose Utilization of Mineral Resources, 2004(3):42-45. doi: 10.3969/j.issn.1000-6532.2004.03.011
CHEN J C , CHEN Y L. The preparation of ferrous sulfate from pyrite cinder by reduction roasting method[J]. Multipurpose Utilization of Mineral Resources, 2004, (3): 42-45. doi: 10.3969/j.issn.1000-6532.2004.03.011
[9] 姜凌, 董亚妮, 田萍. 用硫铁矿烧渣制取聚合硫酸铁的实验研究[J]. 环境科学与技术, 2010, 33(8):148-151,166. JIANG L, DONG Y N, TIAN P. Preparation of polyferric sulfate by pyrite cinder[J]. Environmental Science & Technology, 2010, 33(8):148-151,166.
JIANG L, DONG Y N, TIAN P. Preparation of polyferric sulfate by pyrite cinder[J]. Environmental Science& Technology, 2010, 33(8): 148-151, 166.
[10] 史继斌, 李树安, 徐蕙. 混合酸溶法浸取硫铁矿烧渣制聚硅氯化硫酸铁[J]. 化工矿物与加工, 2007(11):17-20. SHI J B, LI S A, XU H. Preparation of poly-silicic-ferric chloride sulfate from leaching pyrite cinder with mixed acid dissolution method[J]. Industrial minerals & processing, 2007(11):17-20. doi: 10.3969/j.issn.1008-7524.2007.11.005
SHI J B, LI S A, XU H. Preparation of poly-silicic-ferric chloride sulfate from leaching pyrite cinder with mixed acid dissolution method[J]. Industrial minerals & processing, 2007, (11): 17-20. doi: 10.3969/j.issn.1008-7524.2007.11.005
[11] 赵静立. 硫铁矿烧渣为原料合成磷酸铁锂的工艺研究[D]. 武汉: 华中科技大学, 2016.
ZHAO J L. Preparation of LiFePO4 from pyrite cinder using hydrometallurgical and hydrothermal process[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[12] 常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银[J]. 有色金属(冶炼部分), 2015(6):46-49. CHANG Y C, XU X H, WANG Y. Arsenic removal and recovery of gold and silver by chloridizing roasting from high arsenic-bearing pyrite cinder[J]. Nonferrous Metals(Extractive Metallurgy), 2015(6):46-49.
CHANG Y C, XU X H, WANG Y. Arsenic removal and recovery of gold and silver by chloridizing roasting from high arsenic-bearing pyrite cinder[J]. Nonferrous Metals(Extractive Metallurgy), 2015, (6): 46-49.
[13] 范晓正, 严云, 胡志华, 等. 低品位硫铁矿烧渣制备吸波陶瓷的研究[J]. 陶瓷学报, 2015, 36(6):634-639. FAN X Z, YAN Y, HU Z H, et al. Preparation technology of microwave absorbing ceramics with low-grade pyrite cinder[J]. Journal of Ceramics, 2015, 36(6):634-639. doi: 10.13957/j.cnki.tcxb.2015.06.011
FAN X Z, YAN Y, HU Z H, et al. Preparation technology of microwave absorbing ceramics with low-grade pyrite cinder[J]. Journal of Ceramics, 2015, 36(6): 634-639. doi: 10.13957/j.cnki.tcxb.2015.06.011
[14] 谢鹏, 黄阳, 王凡非, 等. 高岭石型硫铁矿烧渣超细粉作高强高性能混凝土用矿物外加剂的性能研究[J]. 非金属矿, 2014, 37(3):22-24. XIE P, HUANG Y, WANG F F, et al. Research on properties of ultrafine kaolinite-pyrite cinder as mineral admixture of high performance concrete[J]. Non-Metallic Mines, 2014, 37(3):22-24. doi: 10.3969/j.issn.1000-8098.2014.03.008
XIE P, HUANG Y, Wang F F, et al. Research on properties of ultrafine kaolinite-pyrite cinder as mineral admixture of high performance concrete[J]. Non-Metallic Mines, 2014, 37(3): 22-24. doi: 10.3969/j.issn.1000-8098.2014.03.008
[15] 生态环境部. 硫酸工业污染防治技术政策[OL]. 中华人民共和国生态环境部. 2013-05-24. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/wrfzjszc/201306/t20130603_253124.shtml
Ministry of Ecology and Environment of the People's Republic of China. Technical policy for pollution control in sulphuric acid industry[OL]. Ministry of Ecology and Environment of the People's Republic of China. 2013-05-24. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/wrfzjszc/201306/t20130603_253124.shtml.
-