Study on Arsenic Removal from Arsenic-Bearing Silver Concentrate
-
摘要:
这是一篇冶金工程领域的论文。以广西某矿浮选的银精矿为研究对象,通过XRD、TG分析显示,其主要成分为硫化银、硫化铁、毒砂、硫化锰、氧化锰等,煅烧分解温度在470~750 ℃之间。通过热力学软件模拟计算银精矿各组分在含氧氛中的分解产物,并研究了煅烧条件对银精矿中砷的去除影响,结果表明:缺氧气氛有利于毒砂分解为As2O3。较佳的煅烧条件为,以400 mL/min流速通入空气,10 ℃/min程序升温到500 ℃,保温30 min,砷去除率可达到87.66%。
Abstract:This is a paper in the field of metallurgical engineering. Flotation silver concentrate from a mine in Guangxi was characterized by XRD and TG, the result displays that, its main components are silver sulfide, ron sulfide, arsenopyrite, manganese sulfide, manganese oxide, etc, and the calcination decomposition temperature is 470~750 ℃. The decomposition products of each component in an oxygen-containing atmosphere are simulated and calculated by thermodynamic software, and the effect of calcination conditions on the removal of arsenic in silver concentrate is studied, the results of which show that the hypoxic environment is conducive to the decomposition of arsenopyrite into As2O3, and the optimal calcination conditions are as follows: the flow rate of 400 mL /min is through air, the temperature is raised to 500 ℃ at 10 ℃/min, and the removal rate of arsenic can reach 87.66% after holding for 30 min.
-
-
表 1 银精矿主要成分/%
Table 1. Main components of silver concentrate
Ag As Zn Cu S Fe Mn Si 其他 12.74 4.03 2.78 0.46 31.57 10.81 27.65 3.26 6.7 -
[1] 胡盘金, 郑永兴, 宁继来, 等. 含砷硫化铜矿浮选除砷研究进展[J]. 矿产综合利用, 2020(5):45-51. HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005
HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005
[2] 卢文鹏, 李瑞冰, 马雁鸿, 等. 铅锌冶炼过程中砷的提取方法[J]. 有色矿冶, 2020, 36(2):34-38. LU W P, LI R B, MA Y H, et al. Extraction method of arsenic in lead-zinc smelting process[J]. Nonferrous Mining and Metallurgy, 2020, 36(2):34-38. doi: 10.3969/j.issn.1007-967X.2020.02.009
LU W P, LI R B, MA Y H, et al. Extraction method of arsenic in lead-zinc smelting process[J]. Nonferrous Mining and Metallurgy, 2020, 36(2): 34-38. doi: 10.3969/j.issn.1007-967X.2020.02.009
[3] 耿家锐, 王振杰, 刘安荣, 等. 锌电解阳极泥中有价金属的提取工艺研究[J]. 矿冶工程, 2019, 188(4):105-108. GENG J R, WANG Z J, LIU A R, et al. Study on the extraction process of valuable metals in zinc electrolysis anode slime[J]. Mining and Metallurgical Engineering, 2019, 188(4):105-108. doi: 10.3969/j.issn.0253-6099.2019.04.023
GENG J R, WANG Z J, LIU A R, et al. Study on the extraction process of valuable metals in zinc electrolysis anode slime[J]. Mining and Metallurgical Engineering, 2019, 188(4): 105-108. doi: 10.3969/j.issn.0253-6099.2019.04.023
[4] WEENA, SIANGPROH, ORAWAN, et al. Simple and fast colorimetric detection of inorganic arsenic selectively adsorbed onto ferrihydrite-coated silica gel using silver nanoplates[J]. Talanta, 2016, 153:197-202. doi: 10.1016/j.talanta.2016.03.028
[5] 徐宝强, 史腾腾, 杨斌, 等. 含砷烟尘的处理及利用研究现状[J]. 昆明理工大学学报:自然科学版, 2019, 44(1):1-11. XU B Q, SHI T T, YANG B, et al. Research status of treatment and utilization of arsenic-containing smoke and dust[J]. Journal of Kunming University of Science and Technology:Natural Science Edition, 2019, 44(1):1-11.
XU B Q, SHI T T, YANG B, et al. Research status of treatment and utilization of arsenic-containing smoke and dust[J]. Journal of Kunming University of Science and Technology: Natural Science Edition, 2019, 44(1): 1-11.
[6] JOSENDE M E, NUNES S M, MÜLLER L, et al. Multigenerational effects of ecotoxicological interaction between arsenic and silver nanoparticles[J]. Science of The Total Environment, 2019, 696:133947. doi: 10.1016/j.scitotenv.2019.133947
[7] 薛光, 于永江. 从含砷金精矿二段焙烧酸浸渣中氰化浸出金银的试验研究[J]. 黄金, 2008, 29(1):40-41. XUE G, YU Y J. Experimental study on the cyanide leaching of gold and silver from the acid leaching residue of arsenic-containing gold concentrate in the second stage of roasting[J]. Gold, 2008, 29(1):40-41. doi: 10.3969/j.issn.1001-1277.2008.01.010
XUE G, YU Y J. Experimental study on the cyanide leaching of gold and silver from the acid leaching residue of arsenic-containing gold concentrate in the second stage of roasting[J]. Gold, 2008, 29(1): 40-41. doi: 10.3969/j.issn.1001-1277.2008.01.010
[8] 张磊, 吴永宁, 赵云峰. 不同形态砷化合物稳定性研究和砷形态分析中样品前处理技术[J]. 国外医学(卫生学分册), 2007, 34(4):238-244. ZHANG L, WU Y N, ZHAO Y F. Stability studies of different forms of arsenic compounds and sample pretreatment techniques in the analysis of arsenic forms[J]. Foreign Medical Science (Health Sciences Branch), 2007, 34(4):238-244.
ZHANG L, WU Y N, ZHAO Y F. Stability studies of different forms of arsenic compounds and sample pretreatment techniques in the analysis of arsenic forms[J]. Foreign Medical Science (Health Sciences Branch), 2007, 34(4): 238-244.
[9] 刘佳, 刘莎, 艾国梁, 等. 湘中杏枫山金矿床毒砂的矿物学研究[J]. 矿产勘查, 2018, 9(11):2122-2133. LIU J, LIU S, AI G L, et al. Mineralogical study of toxic sands from the Hengfeng Mountain gold deposit in central Hunan[J]. Mineral Exploration, 2018, 9(11):2122-2133. doi: 10.3969/j.issn.1674-7801.2018.11.011
LIU J, LIU S, AI G L, et al. Mineralogical study of toxic sands from the Hengfeng Mountain gold deposit in central Hunan[J]. Mineral Exploration, 2018, 9(11): 2122-2133. doi: 10.3969/j.issn.1674-7801.2018.11.011
[10] 王艳荣, 张国刚, 郑晔, 等. 含高砷、银铜矿石微捕收浮选新工艺试验研究[J]. 黄金, 2008, 29(2):31-35. WANG Y R, ZHANG G G, ZHENG Y, et al. Experimental study on new technology of micro-capture flotation of copper ore containing high arsenic and silver[J]. Gold, 2008, 29(2):31-35. doi: 10.3969/j.issn.1001-1277.2008.02.009
WANG Y R, ZHANG G G, ZHENG Y, et al. Experimental study on new technology of micro-capture flotation of copper ore containing high arsenic and silver[J]. Gold, 2008, 29(2): 31-35. doi: 10.3969/j.issn.1001-1277.2008.02.009
[11] 陈京玉, 陈志国, 康卫刚. 新疆某伴生铜钴矿降砷回收工艺研究[J]. 矿产综合利用, 2019(1): 51-56.
CHEN J Y, CHEN Z G, KANG W G. Research on reducing arsenic and recovering mineral processing technology of certain[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 51-56.
[12] 林鸿汉. 含砷炭复杂难处理铜金精矿焙烧工艺研究[J]. 矿产综合利用, 2014(6):49-53. LIN H H. Research on roasting process of complex and refractory copper-goldconcentrate containing arsenic and carbon[J]. Multipurpose Utilization of Mineral Resources, 2014(6):49-53. doi: 10.3969/j.issn.1000-6532.2014.06.013
LIN H H. Research on roasting process of complex and refractory copper-goldconcentrate containing arsenic and carbon[J]. Multipurpose Utilization of Mineral Resources, 2014(6): 49-53. doi: 10.3969/j.issn.1000-6532.2014.06.013
[13] 李学强, 翁占斌, 路良山, 等. 含砷难处理金银精矿催化氧化酸浸湿法的研究及应用[J]. 现代矿业, 2009, 25(1):36-40. LI X Q, WENG Z B, LU L S, et al. Research and application of arsenic-containing refractory gold and silver concentrates by catalytic oxidation acid soaking method[J]. Modern Mining, 2009, 25(1):36-40. doi: 10.3969/j.issn.1674-6082.2009.01.011
LI X Q, WENG Z B, LU L S, et al. Research and application of arsenic-containing refractory gold and silver concentrates by catalytic oxidation acid soaking method[J]. Modern Mining, 2009, 25(1): 36-40. doi: 10.3969/j.issn.1674-6082.2009.01.011
[14] 贾凤梅, 李红立, 訾建新, 等. 含砷钼矿石降低钼精矿含砷的浮选试验[J]. 矿产综合利用, 2012(1):18-21. JI F M, LI H L, ZI J X, et al. Flotation test of arsenic-containing molybdenum ore to reduce arsenic in molybdenum concentrate[J]. Multipurpose Utilization of Mineral Resources, 2012(1):18-21. doi: 10.3969/j.issn.1000-6532.2012.01.005
JI F M, LI H L, ZI J X, et al. Flotation test of arsenic-containing molybdenum ore to reduce arsenic in molybdenum concentrate[J]. Multipurpose Utilization of Mineral Resources, 2012(1): 18-21. doi: 10.3969/j.issn.1000-6532.2012.01.005
[15] 农泽喜, 王兴润, 舒新前, 等. 含砷冶炼废渣高温烧结过程砷的迁移特性[J]. 环境工程学报, 2013, 7(3):1115-1120. NONG Z X, WANG X R, SHU X Q, et al. Migration characteristics of arsenic in smelting slag containing arsenic during high temperature sintering process[J]. Journal of Environmental Engineering, 2013, 7(3):1115-1120.
NONG Z X, WANG X R, SHU X Q, et al. Migration characteristics of arsenic in smelting slag containing arsenic during high temperature sintering process[J]. Journal of Environmental Engineering, 2013, 7(3): 1115-1120.
[16] TOUPIN M, BROUSSE T, BÉLANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004, 16(16):3184-3190. doi: 10.1021/cm049649j
[17] LI X, LI J, PENG Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide[J]. Environmental Science & Technology, 2015, 49(16):9971-9978.
[18] ZÁRATE-GUTIÉRREZ R, LAPIDUS G T, MORALES R D. Pressure leaching of a lead–zinc–silver concentrate with nitric acid at moderate temperatures between 130 and 170°C[J]. Hydrometallurgy, 2010, 104(1): 8-13.
[19] ALVI M A A, BELAYNEH M, SAASEN A, et al. The effect of micro-sized boron nitride BN and iron trioxide Fe2O3 nanoparticles on the properties of laboratory bentonite drilling fluid: Spe Norway One Day Seminar[C]. 2018.
-