铜冶炼渣中主要组分的力学性能对磨矿效果的影响

王成文, 孙磊, 孙伟, 曹学锋, 高志勇, 吴江求. 铜冶炼渣中主要组分的力学性能对磨矿效果的影响[J]. 矿产综合利用, 2023, 44(3): 148-153, 160. doi: 10.3969/j.issn.1000-6532.2023.03.025
引用本文: 王成文, 孙磊, 孙伟, 曹学锋, 高志勇, 吴江求. 铜冶炼渣中主要组分的力学性能对磨矿效果的影响[J]. 矿产综合利用, 2023, 44(3): 148-153, 160. doi: 10.3969/j.issn.1000-6532.2023.03.025
Wang Chengwen, Sun Lei, Sun Wei, Cao Xuefeng, Gao Zhiyong, Wu Jiangqiu. Influence of Minerals Mechanical Properties on Grinding of Copper Smelting Slags Main Components[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 148-153, 160. doi: 10.3969/j.issn.1000-6532.2023.03.025
Citation: Wang Chengwen, Sun Lei, Sun Wei, Cao Xuefeng, Gao Zhiyong, Wu Jiangqiu. Influence of Minerals Mechanical Properties on Grinding of Copper Smelting Slags Main Components[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 148-153, 160. doi: 10.3969/j.issn.1000-6532.2023.03.025

铜冶炼渣中主要组分的力学性能对磨矿效果的影响

  • 基金项目: 国家自然科学基金项目(51904338);湖南省自然科学基金项目(2020JJ5746);国家重点研发计划项目(2020YFC1909202;2019YFE012999)
详细信息
    作者简介: 王成文(1994-),男,硕士研究生,主要研究方向为含铜矿产资源选别工艺与药剂
    通讯作者: 孙磊(1984-),男,副教授,博士,主要从事复杂矿产资源高效利用基础理论与应用研究
  • 中图分类号: TD913

Influence of Minerals Mechanical Properties on Grinding of Copper Smelting Slags Main Components

More Information
  • 这是一篇矿物加工工程领域的论文。铜冶炼渣是重要的含铜二次资源,粉碎是实现铜渣中含铜矿物分离富集的基础和前提。在工艺矿物学分析的基础上,测定了铜渣中主要含铜矿物自然铜和辉铜矿,及主要杂质矿物玻璃质的单轴抗压强度、抗弯强度、抗冲击强度、延展性等力学性能;研究了矿物力学性能与磨矿结果的关系。结果表明:铜渣中主要含铜矿物自然铜和辉铜矿单轴抗压强度、抗弯强度和抗冲击强度均低于玻璃质,因此比玻璃质更易发生粉碎。自然铜具有较好的延展性,能够以粗粒级薄片状的形式与其他矿物分离。而辉铜矿延展性较差,则更易进入细粒级物料。铜渣的磨矿实验结果与矿物力学性能分析结果一致,表明通过矿物材料力学研究矿物粉碎是有效和可行的。

  • 加载中
  • 图 1  三种样品的XRD(a:玻璃质;b:自然铜;c:辉铜矿)

    Figure 1. 

    图 2  铜冶炼渣粉碎后的粒级分布

    Figure 2. 

    图 3  含铜矿物的解离特征

    Figure 3. 

    图 4  三种矿物的单轴抗压强度

    Figure 4. 

    图 5  三种矿物的抗弯强度

    Figure 5. 

    图 6  三种矿物的抗冲击强度

    Figure 6. 

    图 7  三种矿物的延展性

    Figure 7. 

    图 8  磨矿细度与+840 μm粒级中Cu品位及回收率的关系

    Figure 8. 

    图 9  磨矿细度与-74 μm粒级中Cu品位及回收率的关系

    Figure 9. 

    表 1  铜冶炼渣的矿物组成

    Table 1.  Mineral compositions of coppersmelting slag

    矿物组分含量/% 矿物组分含量/% 矿物组分含量/%
    磁铁矿30.31重晶石0.67砷铜矿0.07
    铅玻璃26.40铁白云石0.55氟钛铈矿0.07
    铁橄榄石12.73方解石0.48锆石0.07
    自然铜8.02铬铁矿0.28黄铜矿0.06
    玻璃质7.82金属铁0.16闪锌矿0.04
    辉铜矿4.74黄铜矿0.14钛铁矿0.02
    石英2.30方铅矿0.14金红石0.02
    赤铜铁矿1.43砷铅矿0.14白钨矿0.02
    白云石1.11磷灰石0.13铁尖晶石0.02
    铜砷氧化物1.02萤石0.11其他0.04
    硫酸铜0.81镁铬铁矿0.08总量100.00
    下载: 导出CSV

    表 2  铜冶炼渣中铜的物相及含量

    Table 2.  Copper phase analysis of the coppersmelting slag

    物相自然铜辉铜矿铅玻璃赤铜铁矿铜砷氧化矿
    含量/%57.6921.6010.753.622.35
    物相硫酸铜磁铁矿玻璃质其他总量
    含量/%2.111.180.170.53100.00
    下载: 导出CSV

    表 3  铜冶炼渣的磨矿细度

    Table 3.  Grinding fineness of copper smelting slag

    磨矿时间/min粒级/μm质量分数/%Cu品位/%Cu分布率/%
    1+84027.3214.3330.11
    -840+15031.2613.8333.25
    -150+749.1513.589.56
    -7432.2710.9127.08
    3+84017.1720.8227.15
    -840+15021.8513.4322.29
    -150+7416.9711.3014.56
    -7444.0110.7736.00
    5+84010.0531.4424.25
    -840+1509.2413.949.88
    -150+7421.8411.2718.89
    -7458.8710.4046.98
    8+8408.5432.0320.92
    -840+1508.8914.7510.03
    -150+7416.7312.0215.38
    -7465.8410.6653.67
    10+8406.9932.1217.19
    -840+1504.9414.025.30
    -150+7413.911.1511.87
    -7474.1711.5665.64
    下载: 导出CSV
  • [1]

    柴璐, 鲍庆中, 周永恒, 等. 东北亚地区铜矿资源与供需概况[J]. 矿产综合利用, 2017(6):26-30. CHAI L, BAO Q Z, ZHOU Y H, et al. Investigation on smelting technology of green silicon carbide with anthracite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):26-30. doi: 10.3969/j.issn.1000-6532.2017.06.006

    CHAI L, BAO Q Z, ZHOU Y H, et al. Investigation on smelting technology of green silicon carbide with anthracite[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 26-30. doi: 10.3969/j.issn.1000-6532.2017.06.006

    [2]

    李鹏远, 周平, 唐金荣, 等. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法[J]. 中国矿业, 2019(7):44-51. LI P Y, ZHOU P, TANG J R, et al. Identification and evaluation of copper supply risk for China: using method of long-term historical data analysis[J]. China Mining Magazine, 2019(7):44-51.

    LI P, ZHOU P, TANG JR, et al. Identification and evaluation of copper supply risk for China: using method of long‐term historical data analysis[J]. China Mining Magazine, 2019(7): 44-51.

    [3]

    姚春玲, 刘振楠, 滕瑜, 等. 铜渣资源综合利用现状及展望[J]. 矿冶, 2019, 28(2):77-81,96. YAO C L, LIU Z N, TENG Y, et al. Comprehensive utilization development and prospect of copper slag[J]. Mining & Metallurgy, 2019, 28(2):77-81,96. doi: 10.3969/j.issn.1005-7854.2019.02.017

    YAO CL, LIU ZN, TENG Y, et al. Comprehensive utilization development and prospect of copper slag[J]. Mining & Metallurgy, 2019, 28(2): 77-81, 96. doi: 10.3969/j.issn.1005-7854.2019.02.017

    [4]

    王鹏, 高利坤, 董方, 等. 铜冶炼渣浮选回收铜的研究现状[J]. 矿产综合利用, 2017(01):16-20. WANG P, GAO L K, DONG F, et al. Research status of flotation recovery of copper from copper smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2017(01):16-20. doi: 10.3969/j.issn.1000-6532.2017.01.004

    WANG P, GAO L K, DONG F, et al. Research status of flotation recovery of copper from copper smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2017(01): 16-20. doi: 10.3969/j.issn.1000-6532.2017.01.004

    [5]

    吕旭龙, 衷水平, 印万忠, 等. 某铜冶炼企业冶炼炉渣配矿浮选实验研究[J]. 矿产综合利用, 2019(1):114-118. LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of smelting slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1):114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025

    LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of smelting slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025

    [6]

    李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的实验研究[J]. 矿产综合利用, 2020(2):145-150. LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    LI T, LIU C, YU S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    [7]

    Liu J, Long H, Corin K C. A Study of the effect of grinding environment on the flotation of two copper sulphide ores[J]. Minerals Engineering, 2018(122):339-345.

    [8]

    Abouzeid A Z M, Fuerstenau D W. Grinding of mineral mixtures in high-pressure grinding rolls[J]. International Journal of Mineral Processing, 2009, 93(1):59-65. doi: 10.1016/j.minpro.2009.05.008

    [9]

    文书明, 刘建, 李成必, 等. 矿石碎磨能耗数学模型[J]. 中南大学学报(自然科学版), 2018, 49(9):7-12. WEN S M, LIU J, LI C B, et al. A mathematical model describing energy consumption of crush and grinding[J]. Journal of Central South University (Science and Technology), 2018, 49(9):7-12.

    WEN SM, LIU J, LI C B, et al. A mathematical model describing energy consumption of crush and grinding[J]. Journal of Central South University (Science and Technology), 2018, 49(9): 7-12.

    [10]

    邓禾淼, 肖庆飞, 黄胤淇, 等. 优化介质制度提高中矿再磨作业质量的实验研究[J]. 矿产综合利用, 2019(6):37-40+32. DENG H M, XIAO Q F, HUANG Y Q, et al. Experimental study on optimization of regrinding medium in a copper ore in anhui province[J]. Multipurpose Utilization of Mineral Resources, 2019(6):37-40+32. doi: 10.3969/j.issn.1000-6532.2019.06.008

    DENG H M, XIAO Q F, HUANG Y Q, et al. Experimental study on optimization of regrinding medium in a copper ore in anhui province[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 37-40+32. doi: 10.3969/j.issn.1000-6532.2019.06.008

    [11]

    胡敏, 彭丽, 郭娜, 等. 磷石膏-炭化污泥胶凝材料力学性能实验研究[J]. 矿产综合利用, 2020(4):196-201. HU M, PENG L, GUO N, et al. Experimental study on mechanical properties of phosphogypsum - carbonized sludge cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2020(4):196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034

    HUM, PENG L, GUO N, et al. Experimental study on mechanical properties of phosphogypsum - carbonized sludge cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034

    [12]

    Xu Z, Li Y, Liu S. The Characteristics study of sphalerite tailings by using MLA[J]. Procedia Engineering, 2015(102):278-286.

    [13]

    Wills B A, TIM Napier-Munn. Grinding mills[J]. Wills Mineral Processing Technology, 2005, 39(13):146-185.

    [14]

    沙鹏, 张庆同, 林军, 等. 基于点荷载强度的火成岩单轴抗压强度原位估算[J]. 岩土力学, 2020(S2):1-10. SHA P, ZHANG Q T, LIN J, et al. In-situ estimation of uniaxial compressive strength of igneous rocks based on point load strength[J]. Rock and Soil Mechanics, 2020(S2):1-10. doi: 10.16285/j.rsm.2020.0371

    SHA P, ZHANG Q, LIN J, et al. In-situ estimation of uniaxial compressive strength of igneous rocks based on point load strength[J]. Rock and Soil Mechanics, 2020(S2): 1-10. doi: 10.16285/j.rsm.2020.0371

    [15]

    杜进生, 赖国麟. 无粘结部分预应力混凝土受弯构件正截面抗弯强度计算方法的研究[J]. 桥梁建设, 1997(3):15-19. DU J S, LAI G L. Study on calculating method of flexural strength of normal section of unbonded partially prestressed concrete flexural member[J]. Bridge Construction, 1997(3):15-19.

    DU J S, LAI G L. Study on calculating method of flexural strength of normal section of unbonded partially prestressed concrete flexural member[J]. Bridge Construction, 1997(3): 15-19.

    [16]

    宫亚峰, 孔维康, 孟广锐, 等. 基于落球法的复合材料板冲击特性实验[J]. 吉林大学学报(工学版), 2019, 49(2):401-407. GONG Y F, KONG W K, MENG G R, et al. Experimental study on impact characteristics of composite plates based on falling ball method[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2):401-407.

    GONG YF, KONG W K, MENG G R, et al. Experimental study on impact characteristics of composite plates based on falling ball method[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 401-407.

    [17]

    Courtney T. Mechanical behavior of materials[M]. McGraw-Hill, 2004.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  659
  • PDF下载数:  188
  • 施引文献:  0
出版历程
收稿日期:  2020-11-03
刊出日期:  2023-06-25

目录