Influence of Minerals Mechanical Properties on Grinding of Copper Smelting Slags Main Components
-
摘要:
这是一篇矿物加工工程领域的论文。铜冶炼渣是重要的含铜二次资源,粉碎是实现铜渣中含铜矿物分离富集的基础和前提。在工艺矿物学分析的基础上,测定了铜渣中主要含铜矿物自然铜和辉铜矿,及主要杂质矿物玻璃质的单轴抗压强度、抗弯强度、抗冲击强度、延展性等力学性能;研究了矿物力学性能与磨矿结果的关系。结果表明:铜渣中主要含铜矿物自然铜和辉铜矿单轴抗压强度、抗弯强度和抗冲击强度均低于玻璃质,因此比玻璃质更易发生粉碎。自然铜具有较好的延展性,能够以粗粒级薄片状的形式与其他矿物分离。而辉铜矿延展性较差,则更易进入细粒级物料。铜渣的磨矿实验结果与矿物力学性能分析结果一致,表明通过矿物材料力学研究矿物粉碎是有效和可行的。
Abstract:This is a paper in the field of mineral processing engineering. Copper smelting slag is a kind of important secondary resource of copper. Crushing is the basis and prerequisite for the separation and enrichment of copper minerals in copper smelting slag. Based on the analysis of process mineralogy, the mechanical properties of the main copper minerals, natural copper and chalcocite, and the main gangue mineral glass in copper smelting slag were determined, including uniaxial compressive strength, bending strength, impact strength, and ductility. The relationship between mechanical properties of minerals and grinding were studied. The results showed that the main copper minerals, natural copper and chalcocite, in copper smelting slag were with lower uniaxial compressive strength, bending strength, and impact strength than glass, so they were both more likely to be crushed than glass.Natural copper had better ductility to be ground in the form of coarse-grained flakes and could be separated from other minerals. Poor ductility of chalcocite made it easier to be ground into fine-grained products.The grinding results of copper smelting slag were consistent with the analysis of mineral mechanical properties, which indicated that it was effective and feasible to analyze and study the mineral crushing by mineral mechanical properties.
-
-
表 1 铜冶炼渣的矿物组成
Table 1. Mineral compositions of coppersmelting slag
矿物组分 含量/% 矿物组分 含量/% 矿物组分 含量/% 磁铁矿 30.31 重晶石 0.67 砷铜矿 0.07 铅玻璃 26.40 铁白云石 0.55 氟钛铈矿 0.07 铁橄榄石 12.73 方解石 0.48 锆石 0.07 自然铜 8.02 铬铁矿 0.28 黄铜矿 0.06 玻璃质 7.82 金属铁 0.16 闪锌矿 0.04 辉铜矿 4.74 黄铜矿 0.14 钛铁矿 0.02 石英 2.30 方铅矿 0.14 金红石 0.02 赤铜铁矿 1.43 砷铅矿 0.14 白钨矿 0.02 白云石 1.11 磷灰石 0.13 铁尖晶石 0.02 铜砷氧化物 1.02 萤石 0.11 其他 0.04 硫酸铜 0.81 镁铬铁矿 0.08 总量 100.00 表 2 铜冶炼渣中铜的物相及含量
Table 2. Copper phase analysis of the coppersmelting slag
物相 自然铜 辉铜矿 铅玻璃 赤铜铁矿 铜砷氧化矿 含量/% 57.69 21.60 10.75 3.62 2.35 物相 硫酸铜 磁铁矿 玻璃质 其他 总量 含量/% 2.11 1.18 0.17 0.53 100.00 表 3 铜冶炼渣的磨矿细度
Table 3. Grinding fineness of copper smelting slag
磨矿时间/min 粒级/μm 质量分数/% Cu品位/% Cu分布率/% 1 +840 27.32 14.33 30.11 -840+150 31.26 13.83 33.25 -150+74 9.15 13.58 9.56 -74 32.27 10.91 27.08 3 +840 17.17 20.82 27.15 -840+150 21.85 13.43 22.29 -150+74 16.97 11.30 14.56 -74 44.01 10.77 36.00 5 +840 10.05 31.44 24.25 -840+150 9.24 13.94 9.88 -150+74 21.84 11.27 18.89 -74 58.87 10.40 46.98 8 +840 8.54 32.03 20.92 -840+150 8.89 14.75 10.03 -150+74 16.73 12.02 15.38 -74 65.84 10.66 53.67 10 +840 6.99 32.12 17.19 -840+150 4.94 14.02 5.30 -150+74 13.9 11.15 11.87 -74 74.17 11.56 65.64 -
[1] 柴璐, 鲍庆中, 周永恒, 等. 东北亚地区铜矿资源与供需概况[J]. 矿产综合利用, 2017(6):26-30. CHAI L, BAO Q Z, ZHOU Y H, et al. Investigation on smelting technology of green silicon carbide with anthracite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):26-30. doi: 10.3969/j.issn.1000-6532.2017.06.006
CHAI L, BAO Q Z, ZHOU Y H, et al. Investigation on smelting technology of green silicon carbide with anthracite[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 26-30. doi: 10.3969/j.issn.1000-6532.2017.06.006
[2] 李鹏远, 周平, 唐金荣, 等. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法[J]. 中国矿业, 2019(7):44-51. LI P Y, ZHOU P, TANG J R, et al. Identification and evaluation of copper supply risk for China: using method of long-term historical data analysis[J]. China Mining Magazine, 2019(7):44-51.
LI P, ZHOU P, TANG JR, et al. Identification and evaluation of copper supply risk for China: using method of long‐term historical data analysis[J]. China Mining Magazine, 2019(7): 44-51.
[3] 姚春玲, 刘振楠, 滕瑜, 等. 铜渣资源综合利用现状及展望[J]. 矿冶, 2019, 28(2):77-81,96. YAO C L, LIU Z N, TENG Y, et al. Comprehensive utilization development and prospect of copper slag[J]. Mining & Metallurgy, 2019, 28(2):77-81,96. doi: 10.3969/j.issn.1005-7854.2019.02.017
YAO CL, LIU ZN, TENG Y, et al. Comprehensive utilization development and prospect of copper slag[J]. Mining & Metallurgy, 2019, 28(2): 77-81, 96. doi: 10.3969/j.issn.1005-7854.2019.02.017
[4] 王鹏, 高利坤, 董方, 等. 铜冶炼渣浮选回收铜的研究现状[J]. 矿产综合利用, 2017(01):16-20. WANG P, GAO L K, DONG F, et al. Research status of flotation recovery of copper from copper smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2017(01):16-20. doi: 10.3969/j.issn.1000-6532.2017.01.004
WANG P, GAO L K, DONG F, et al. Research status of flotation recovery of copper from copper smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2017(01): 16-20. doi: 10.3969/j.issn.1000-6532.2017.01.004
[5] 吕旭龙, 衷水平, 印万忠, 等. 某铜冶炼企业冶炼炉渣配矿浮选实验研究[J]. 矿产综合利用, 2019(1):114-118. LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of smelting slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1):114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025
LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of smelting slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025
[6] 李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的实验研究[J]. 矿产综合利用, 2020(2):145-150. LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026
LI T, LIU C, YU S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026
[7] Liu J, Long H, Corin K C. A Study of the effect of grinding environment on the flotation of two copper sulphide ores[J]. Minerals Engineering, 2018(122):339-345.
[8] Abouzeid A Z M, Fuerstenau D W. Grinding of mineral mixtures in high-pressure grinding rolls[J]. International Journal of Mineral Processing, 2009, 93(1):59-65. doi: 10.1016/j.minpro.2009.05.008
[9] 文书明, 刘建, 李成必, 等. 矿石碎磨能耗数学模型[J]. 中南大学学报(自然科学版), 2018, 49(9):7-12. WEN S M, LIU J, LI C B, et al. A mathematical model describing energy consumption of crush and grinding[J]. Journal of Central South University (Science and Technology), 2018, 49(9):7-12.
WEN SM, LIU J, LI C B, et al. A mathematical model describing energy consumption of crush and grinding[J]. Journal of Central South University (Science and Technology), 2018, 49(9): 7-12.
[10] 邓禾淼, 肖庆飞, 黄胤淇, 等. 优化介质制度提高中矿再磨作业质量的实验研究[J]. 矿产综合利用, 2019(6):37-40+32. DENG H M, XIAO Q F, HUANG Y Q, et al. Experimental study on optimization of regrinding medium in a copper ore in anhui province[J]. Multipurpose Utilization of Mineral Resources, 2019(6):37-40+32. doi: 10.3969/j.issn.1000-6532.2019.06.008
DENG H M, XIAO Q F, HUANG Y Q, et al. Experimental study on optimization of regrinding medium in a copper ore in anhui province[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 37-40+32. doi: 10.3969/j.issn.1000-6532.2019.06.008
[11] 胡敏, 彭丽, 郭娜, 等. 磷石膏-炭化污泥胶凝材料力学性能实验研究[J]. 矿产综合利用, 2020(4):196-201. HU M, PENG L, GUO N, et al. Experimental study on mechanical properties of phosphogypsum - carbonized sludge cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2020(4):196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034
HUM, PENG L, GUO N, et al. Experimental study on mechanical properties of phosphogypsum - carbonized sludge cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034
[12] Xu Z, Li Y, Liu S. The Characteristics study of sphalerite tailings by using MLA[J]. Procedia Engineering, 2015(102):278-286.
[13] Wills B A, TIM Napier-Munn. Grinding mills[J]. Wills Mineral Processing Technology, 2005, 39(13):146-185.
[14] 沙鹏, 张庆同, 林军, 等. 基于点荷载强度的火成岩单轴抗压强度原位估算[J]. 岩土力学, 2020(S2):1-10. SHA P, ZHANG Q T, LIN J, et al. In-situ estimation of uniaxial compressive strength of igneous rocks based on point load strength[J]. Rock and Soil Mechanics, 2020(S2):1-10. doi: 10.16285/j.rsm.2020.0371
SHA P, ZHANG Q, LIN J, et al. In-situ estimation of uniaxial compressive strength of igneous rocks based on point load strength[J]. Rock and Soil Mechanics, 2020(S2): 1-10. doi: 10.16285/j.rsm.2020.0371
[15] 杜进生, 赖国麟. 无粘结部分预应力混凝土受弯构件正截面抗弯强度计算方法的研究[J]. 桥梁建设, 1997(3):15-19. DU J S, LAI G L. Study on calculating method of flexural strength of normal section of unbonded partially prestressed concrete flexural member[J]. Bridge Construction, 1997(3):15-19.
DU J S, LAI G L. Study on calculating method of flexural strength of normal section of unbonded partially prestressed concrete flexural member[J]. Bridge Construction, 1997(3): 15-19.
[16] 宫亚峰, 孔维康, 孟广锐, 等. 基于落球法的复合材料板冲击特性实验[J]. 吉林大学学报(工学版), 2019, 49(2):401-407. GONG Y F, KONG W K, MENG G R, et al. Experimental study on impact characteristics of composite plates based on falling ball method[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2):401-407.
GONG YF, KONG W K, MENG G R, et al. Experimental study on impact characteristics of composite plates based on falling ball method[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 401-407.
[17] Courtney T. Mechanical behavior of materials[M]. McGraw-Hill, 2004.
-