鄂西地区某脉石英中流体包裹体特征分析

张立, 胡修权, 张晋, 尤大海, 李国栋, 张朝宏. 鄂西地区某脉石英中流体包裹体特征分析[J]. 矿产综合利用, 2023, 44(3): 205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034
引用本文: 张立, 胡修权, 张晋, 尤大海, 李国栋, 张朝宏. 鄂西地区某脉石英中流体包裹体特征分析[J]. 矿产综合利用, 2023, 44(3): 205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034
Zhang Li, Hu Xiuquan, Zhang Jin, You Dahai, Li Guodong, Zhang Chaohong. Characteristic Analysis on Fluid Inclusions of Vein Quartz in Western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034
Citation: Zhang Li, Hu Xiuquan, Zhang Jin, You Dahai, Li Guodong, Zhang Chaohong. Characteristic Analysis on Fluid Inclusions of Vein Quartz in Western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034

鄂西地区某脉石英中流体包裹体特征分析

  • 基金项目: 2021年湖北省重点研发计划项目(2021BAA207)
详细信息
    作者简介: 张立(1987-),男,助理研究员,硕士,主要从事非金属矿物材料制备及矿产资源综合利用研究。
  • 中图分类号: TD97

Characteristic Analysis on Fluid Inclusions of Vein Quartz in Western Hubei Province

  • 这是一篇工艺矿物学领域的文章。高纯石英砂作为高档石英制品的主要原料,对杂质元素含量要求严格,其中包裹体赋存状态对其纯度及性能有重要影响。据此,对鄂西某脉石英矿中包裹体采用X射线衍射、等离子体原子发射光谱、光学显微镜、显微测温和激光拉曼光谱等多项分析方法,进行了详细的研究。结果表明:矿石中SiO2含量>99.9%,杂质元素主要为Al和部分碱金属元素;矿石中包裹体为单相盐水溶液包裹体、气液两相包裹体和含CO2三相包裹体,无固相包裹体。包裹体大小主要集中在5~25 μm,均一温度为160~270℃,盐度小于10.00 % NaCl,成矿流体属中低温、低盐度流体。根据包裹体特征分析结果,经过深加工提纯后,矿石可用作高纯石英砂原料。

  • 加载中
  • 图 1  原矿XRD

    Figure 1. 

    图 2  原矿偏光显微照片

    Figure 2. 

    图 3  包裹体镜下照片

    Figure 3. 

    图 4  流体包裹体冰点温度(左)与盐度(右)

    Figure 4. 

    图 5  流体包裹体均一温度

    Figure 5. 

    图 6  流体包裹体均一温度-盐度散点

    Figure 6. 

    图 7  包裹体拉曼光谱分析结果

    Figure 7. 

    表 1  流体包裹体中常见物质的拉曼位移

    Table 1.  Raman shift of the common materials inside the fluid inclusion

    官能团种类△ν 官能团种类△ν
    SO42-983 H2S2611
    SO21151CH42917
    12CO2—v11285H2O(液)3219
    12CO2—2v21388NH33336
    CO2143H2O(气)3657
    N22331H24156
    下载: 导出CSV

    表 2  矿石杂质主要元素分析结果/(g·t-1)

    Table 2.  Composition of the sample

    AlNaCaTiKMgFeLiB合计
    43.5019.1218.515.724.241.280.640.380.2693.65
    下载: 导出CSV
  • [1]

    Haus R, Prinz S, Priess C. Assessment of high purity quartz resources[J]. Quartz: Deposits, Mineralogy and Analytics, 2012: 29—51.

    [2]

    赵动. 去除微小气液包裹体制备高纯石英砂的研究[D]. 广州: 华南理工大学.

    ZHAO D. Study on the preparation of high-purity quartz sand by removing micro gas-liquid inclusions [D]. Guangzhou: South China University of Technology.

    [3]

    刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115.

    LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115.

    [4]

    汪灵, 李彩侠, 王艳, 等. 我国高纯石英加工技术现状与发展建议[J]. 矿物岩石, 2011, 31(4):110-114. WANG L, LI C X, WANG Y, et al. Current status and development suggestions of high-purity quartz processing technology in China[J]. Mineral Rocks, 2011, 31(4):110-114.

    WANG L, LI C X, WANG Y, et al. Current status and development suggestions of high-purity quartz processing technology in China[J]. Mineral Rocks, 2011, 31(4): 110-114.

    [5]

    魏玉燕. 脉石英显微结构与包裹体特征及其与高纯石英加工提纯的关系[D]. 成都: 成都理工大学, 2015: 4-6.

    WEI Y Y. Microstructure and inclusions characteristics of vein quartz and their relationship with the processing and purification of high-purity quartz [D]. Chengdu: Chengdu University of Technology, 2015: 4-6.

    [6]

    Kreisberg V A, Rakcheev V P, Spivakova N Y. Peculiarities of diffusive transport of water and other gases in glassy and crystalline silicas[J]. Fundamentals of Glass Science and Technology, 1997: 93-100.

    [7]

    方 魏, 王 梅, 王兴旺, 等. 雷尼绍拉曼光谱仪的基本原理和仪器改进[J]. 科技资讯, 2016, 14(9):66-68. FANG W, WANG M, WANG X W, et al. Basic principles and instrument improvements of Renishaw Raman spectrometer[J]. Science and Technology Information, 2016, 14(9):66-68.

    FANG W, WANG M, WANG X W, et al. Basic principles and instrument improvements of Renishaw Raman spectrometer [J]. Science and Technology Information, 2016, 14(9): 66-68.

    [8]

    陈 勇, ERNST A J Burke. 流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向[J]. 地质论评, 2009(6):851-861. CHEN Y, ERNST A J Burke. Principles, methods, problems and future research directions of laser Raman spectroscopy of fluid inclusions[J]. Geological Review, 2009(6):851-861.

    CHEN Y, ERNST A J Burke. Principles, methods, problems and future research directions of laser Raman spectroscopy of fluid inclusions[J]. Geological Review, 2009(6): 851-861.

    [9]

    卢焕章. 流体包裹体[M]. 北京: 科学出版社, 2004.

    LU H Z. Fluid inclusions [M]. Beijing: Science Press, 2004.

    [10]

    殷德强, 汪 灵, 孔 芹, 等. 四川沐川黄丹石英砂岩工艺矿物学研究[J]. 矿物岩石, 2010, 30(1):1-5. YIN D Q, WANG L, KONG Q, et al. Process mineralogy of Huangdan quartz sandstone in Mucheon, Sichuan[J]. Mineral Rocks, 2010, 30(1):1-5.

    YIN D Q, WANG L, KONG Q, et al. Process mineralogy of Huangdan quartz sandstone in Mucheon, Sichuan[J]. Mineral Rocks, 2010, 30(1): 1-5.

    [11]

    贺贤举, 管俊芳, 张 冲, 等. TFT-LCD玻璃基板用脉石英工艺矿物学研究[J]. 矿产综合利用, 2019(2):79-82. HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT - LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2):79-82.

    HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT - LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 79-82.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1038
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2021-04-21
刊出日期:  2023-06-25

目录