Characteristic Analysis on Fluid Inclusions of Vein Quartz in Western Hubei Province
-
摘要:
这是一篇工艺矿物学领域的文章。高纯石英砂作为高档石英制品的主要原料,对杂质元素含量要求严格,其中包裹体赋存状态对其纯度及性能有重要影响。据此,对鄂西某脉石英矿中包裹体采用X射线衍射、等离子体原子发射光谱、光学显微镜、显微测温和激光拉曼光谱等多项分析方法,进行了详细的研究。结果表明:矿石中SiO2含量>99.9%,杂质元素主要为Al和部分碱金属元素;矿石中包裹体为单相盐水溶液包裹体、气液两相包裹体和含CO2三相包裹体,无固相包裹体。包裹体大小主要集中在5~25 μm,均一温度为160~270℃,盐度小于10.00 % NaCl,成矿流体属中低温、低盐度流体。根据包裹体特征分析结果,经过深加工提纯后,矿石可用作高纯石英砂原料。
Abstract:This is an article in the field of process mineralogy. As the raw material of high-grade quartz products, higher-purity quartz sand has strict requirements on impurity elements.Besides that, the presence of inclusions has an important impact on its purity and performance.Based on this, the fluid inclusions in the vein quartz of western Hubei Province have been studied in detail by using X-ray diffraction, plasma atomic emission spectroscopy, optical microscope, micro temperature measurement and laser Raman spectroscopy.The results show that the content of SiO2 in the ore is beyond 99.9%, and the impurity elements are mainly Al and alkali metal elements.The inclusions in the quartz are single-phase saline solution inclusions, two-phase inclusions and containing CO2 three-phase inclusions.There is no solid inclusions in the ore.The size of inclusions is mainly concentrated in 5~25 μm.The uniform temperature is 160~270 ℃ and the salinity is less than 10.00% NaCl. As a result, the ore-forming fluid belongs to medium-low temperature and low salinity fluid.According to the analysis results of the inclusion characteristics, the ore can be used as a raw material for high-purity quartz sand after deep processing and purification.
-
Key words:
- Process mineralogy /
- Vein quartz /
- Fluid inclusions /
- Uniform temperature /
- Salinity /
- Ore-forming fluid /
- High-purity quartz
-
-
表 1 流体包裹体中常见物质的拉曼位移
Table 1. Raman shift of the common materials inside the fluid inclusion
官能团种类 △ν 官能团种类 △ν SO42- 983 H2S 2611 SO2 1151 CH4 2917 12CO2—v1 1285 H2O(液) 3219 12CO2—2v2 1388 NH3 3336 CO 2143 H2O(气) 3657 N2 2331 H2 4156 表 2 矿石杂质主要元素分析结果/(g·t-1)
Table 2. Composition of the sample
Al Na Ca Ti K Mg Fe Li B 合计 43.50 19.12 18.51 5.72 4.24 1.28 0.64 0.38 0.26 93.65 -
[1] Haus R, Prinz S, Priess C. Assessment of high purity quartz resources[J]. Quartz: Deposits, Mineralogy and Analytics, 2012: 29—51.
[2] 赵动. 去除微小气液包裹体制备高纯石英砂的研究[D]. 广州: 华南理工大学.
ZHAO D. Study on the preparation of high-purity quartz sand by removing micro gas-liquid inclusions [D]. Guangzhou: South China University of Technology.
[3] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115.
LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115.
[4] 汪灵, 李彩侠, 王艳, 等. 我国高纯石英加工技术现状与发展建议[J]. 矿物岩石, 2011, 31(4):110-114. WANG L, LI C X, WANG Y, et al. Current status and development suggestions of high-purity quartz processing technology in China[J]. Mineral Rocks, 2011, 31(4):110-114.
WANG L, LI C X, WANG Y, et al. Current status and development suggestions of high-purity quartz processing technology in China[J]. Mineral Rocks, 2011, 31(4): 110-114.
[5] 魏玉燕. 脉石英显微结构与包裹体特征及其与高纯石英加工提纯的关系[D]. 成都: 成都理工大学, 2015: 4-6.
WEI Y Y. Microstructure and inclusions characteristics of vein quartz and their relationship with the processing and purification of high-purity quartz [D]. Chengdu: Chengdu University of Technology, 2015: 4-6.
[6] Kreisberg V A, Rakcheev V P, Spivakova N Y. Peculiarities of diffusive transport of water and other gases in glassy and crystalline silicas[J]. Fundamentals of Glass Science and Technology, 1997: 93-100.
[7] 方 魏, 王 梅, 王兴旺, 等. 雷尼绍拉曼光谱仪的基本原理和仪器改进[J]. 科技资讯, 2016, 14(9):66-68. FANG W, WANG M, WANG X W, et al. Basic principles and instrument improvements of Renishaw Raman spectrometer[J]. Science and Technology Information, 2016, 14(9):66-68.
FANG W, WANG M, WANG X W, et al. Basic principles and instrument improvements of Renishaw Raman spectrometer [J]. Science and Technology Information, 2016, 14(9): 66-68.
[8] 陈 勇, ERNST A J Burke. 流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向[J]. 地质论评, 2009(6):851-861. CHEN Y, ERNST A J Burke. Principles, methods, problems and future research directions of laser Raman spectroscopy of fluid inclusions[J]. Geological Review, 2009(6):851-861.
CHEN Y, ERNST A J Burke. Principles, methods, problems and future research directions of laser Raman spectroscopy of fluid inclusions[J]. Geological Review, 2009(6): 851-861.
[9] 卢焕章. 流体包裹体[M]. 北京: 科学出版社, 2004.
LU H Z. Fluid inclusions [M]. Beijing: Science Press, 2004.
[10] 殷德强, 汪 灵, 孔 芹, 等. 四川沐川黄丹石英砂岩工艺矿物学研究[J]. 矿物岩石, 2010, 30(1):1-5. YIN D Q, WANG L, KONG Q, et al. Process mineralogy of Huangdan quartz sandstone in Mucheon, Sichuan[J]. Mineral Rocks, 2010, 30(1):1-5.
YIN D Q, WANG L, KONG Q, et al. Process mineralogy of Huangdan quartz sandstone in Mucheon, Sichuan[J]. Mineral Rocks, 2010, 30(1): 1-5.
[11] 贺贤举, 管俊芳, 张 冲, 等. TFT-LCD玻璃基板用脉石英工艺矿物学研究[J]. 矿产综合利用, 2019(2):79-82. HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT - LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2):79-82.
HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT - LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 79-82.
-