江西某铅锌矿区土壤重金属形态分析及风险评价

张永康, 冯乃琦, 刘岩, 徐志强, 张耀, 王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价[J]. 矿产综合利用, 2023, 44(3): 199-204, 210. doi: 10.3969/j.issn.1000-6532.2023.03.033
引用本文: 张永康, 冯乃琦, 刘岩, 徐志强, 张耀, 王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价[J]. 矿产综合利用, 2023, 44(3): 199-204, 210. doi: 10.3969/j.issn.1000-6532.2023.03.033
Zhang Yongkang, Feng Naiqi, Liu Yan, Xu Zhiqiang, Zhang Yao, Wang Qing. Speciation Analysis and Risk Assessment of Heavy Metals in the Soil of a Lead-Zinc Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 199-204, 210. doi: 10.3969/j.issn.1000-6532.2023.03.033
Citation: Zhang Yongkang, Feng Naiqi, Liu Yan, Xu Zhiqiang, Zhang Yao, Wang Qing. Speciation Analysis and Risk Assessment of Heavy Metals in the Soil of a Lead-Zinc Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 199-204, 210. doi: 10.3969/j.issn.1000-6532.2023.03.033

江西某铅锌矿区土壤重金属形态分析及风险评价

  • 基金项目: 中国地质调查局地质调查项目(长江中游黄石-萍乡-德兴矿山集中区综合地质调查 DD20190269)
详细信息
    作者简介: 张永康(1987-),男,硕士,工程师,从事矿产资源综合利用及矿山地质环境保护研究
    通讯作者: 刘岩(1986-),男,硕士,工程师,从事矿产资源综合利用及矿山地质环境保护研究。
  • 中图分类号: TD985;X825

Speciation Analysis and Risk Assessment of Heavy Metals in the Soil of a Lead-Zinc Mining Area

More Information
  • 这是一篇矿山环境工程领域的论文。土壤重金属污染影响时间长,具有较高的生物毒性,严重威胁人类健康。为了研究铅锌矿区土壤重金属污染现状和评估重金属污染风险,以江西某铅锌矿区为研究对象,采用改进BCR连续提取法分析了某铅锌矿区土壤样品重金属元素(Cu、Pb、Zn、Cd)形态,并对重金属元素相关性进行了研究,利用风险评价编码法和次生相与原生相分布比值法评价了重金属元素的环境风险。结果表明:铅锌矿区土壤中Cu、Zn、Cd、Pb元素全量超标,Cu、Zn、Pb元素以残渣态为主,相较于Cu、Zn、Pb元素,土壤样品中Cd元素酸可提取态含量高,生物有效性强,Cd元素污染严重。矿区土壤样品中Cu、Zn、Pb元素残渣态含量均与全量呈极显著正相关,Cd元素残渣态与全量相关性不显著;酸可提取态中Cu、Zn、Cd、Pb元素含量呈极显著正相关,酸可提取态与pH值呈负相关。风险评价编码法和次生相与原生相分布比值法分析的结论较为一致,均为Cd元素污染严重,环境风险高,Cu、Pb、Zn元素污染较轻,环境风险低。本文可为铅锌矿区土壤重金属污染防治提供参考。

  • 加载中
  • 图 1  土壤样品重金属元素形态分布

    Figure 1. 

    表 1  样品采集信息

    Table 1.  Sample collection information

    矿区位置样品编号采样点描述
    尾矿库下游TRYP-1尾矿库下游约50 m农田,表层土
    TRYP-2尾矿库下游约50 m农田,取样深度40~60 cm
    TRYP-3尾矿库下游约50 m农田,取样深度100~120 cm
    TRYP-4尾矿库下游约400 m农田内
    TRYP-5尾矿库下游约1600 m农田,表层土
    TRYP-6尾矿库下游约3200 m农田,表层土
    TRYP-7已复垦尾矿库下游约400 m农田,表层土
    排土场下游TRYP-8排土场下游约400 m荒地,表层土
    TRYP-9排土场下游约1000 m农田内,表层土
    TRYP-10排土场下游约1200 m菜地内,表层土
    TRYP-11排土场下游约1800 m农田内,表层土
    对照区TRYP-12位于矿区上游约1000 m,基本不受矿区影响,表层土
    下载: 导出CSV

    表 2  样品中重金属含量平均值描述性统计

    Table 2.  Statistic results of heavy metals in soil

    元素全量酸可
    提取态
    可还
    原态
    可氧
    化态
    残渣态回收率*/%农用地土壤污染风险筛选值
    (GB15618-2018)
    重金属元素
    平均超标倍数
    Cu59.262.371.417.3847.7399.38501.19
    Zn321.0926.8613.8112.24265.8799.282001.61
    Cd0.890.450.140.040.2699.520.42.23
    Pb186.768.848.5815.77152.0799.191001.87
    注:表2中重金属元素含量平均值和标准限值单位均为mg·kg-1,回收率*=重金属各形态组分含量之和/重金属全量×100%
    下载: 导出CSV

    表 3  重金属元素不同形态含量与全量相关性分析

    Table 3.  Correlation analysis between different forms and contents of heavy metals elements

    元素因素全量酸可提取态可还原态可氧化态残渣态pH值
    Cu全量1
    酸可提取态0.619*1
    可还原态0.218-0.3231
    可氧化态0.2020.0340.651*1
    残渣态0.978**0.5750.1160.0111
    pH0.203-0.3210.0480.0730.2331
    Zn全量1
    酸可提取态0.590*1
    可还原态0.1040.3141
    可氧化态0.1530.0470.739**1
    残渣态0.991**0.4910.0140.1081
    pH-0.102-0.440-0.0620.384-0.0591
    Cd全量1
    酸可提取态0.815**1
    可还原态0.629*0.4091
    可氧化态0.681*0.5020.962**1
    残渣态0.331-0.054-0.260-0.2591
    pH0.297-0.1140.2620.2550.4811
    Pb全量1
    酸可提取态0.767**1
    可还原态0.5420.3331
    可氧化态0.4690.3770.5251
    残渣态0.995**0.731**0.4910.3971
    pH-0.140-0.467-0.150-0.042-0.1021
    注:*为显著性相关(显著性水平<0.05),**为极显著性相关(显著性水平<0.01)。
    下载: 导出CSV

    表 4  相同提取态下重金属元素相关性分析

    Table 4.  Correlation analysis of heavy metals elements in the same form

    元素形态因素CuZnCdPbpH值
    酸可提取态Cu1
    Zn0.836**1
    Cd0.641*0.820**1
    Pb0.717**0.851**0.705**1
    pH-0.321-0.440-0.114-0.4671
    可还原态Cu1
    Zn0.1661
    Cd-0.1880.0761
    Pb0.1970.0060.0101
    pH0.048-0.0620.262-0.1501
    可氧化态Cu1
    Zn0.596*1
    Cd0.2320.603*1
    Pb0.4520.674*0.690*1
    pH0.0730.3840.255-0.0421
    残渣态Cu1
    Zn0.816**1
    Cd0.4430.1661
    Pb0.751**0.856**0.1851
    pH0.233-0.0590.481-0.1021
    全量Cu1
    Zn0.839**1
    Cd0.5270.619*1
    Pb0.737**0.838**0.4531
    pH0.203-0.1020.297-0.1401
    注:*为显著性相关(显著性水平<0.05),**为极显著性相关(显著性水平<0.01)。
    下载: 导出CSV

    表 5  土壤重金属RAC值与风险程度

    Table 5.  RAC values and risk of heavy metals in soil

    元素RAC平均值/%RAC<1%1%≤RAC<10%10%≤RAC<30%30%≤RAC<50%RAC≥50%
    数量比例/%数量比例/%数量比例/%数量比例/%数量比例/%
    Cu4.0218.331191.67000000
    Zn8.3200866.67433.330000
    Cd51.05000018.33650.00541.67
    Pb3.60001191.6718.330000
    风险等级无风险低风险中等风险高度风险极高风险
    下载: 导出CSV

    表 6  土壤重金属RSP值与污染程度

    Table 6.  RSP values and pollution degree of soil heavy metals

    元素RSP平均值RSP<11≤RSP<22≤RSP<3RSP≥3
    数量比例/%数量比例/%数量比例%数量比例/%
    Cu0.311191.6718.330000
    Zn0.2912100000000
    Cd6.8018.33433.3418.33650.00
    Pb0.3112100000000
    风险等级轻度中度重度
    下载: 导出CSV
  • [1]

    王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 2021, 41(8):3693-3703. WANG Q L, SONG Y T, WANG C W, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 2021, 41(8):3693-3703. doi: 10.3969/j.issn.1000-6923.2021.08.026

    WANG Q L, SONG Y T, WANG C W, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 2021, 41(8): 3693-3703. doi: 10.3969/j.issn.1000-6923.2021.08.026

    [2]

    刘晓媛, 刘品祯, 杜启露, 等. 地质高背景区铅锌矿废弃地土壤重金属污染评价[J]. 有色金属(冶炼部分), 2019(2):76-82. LIU X Y, LIU P Z, DU Q L, et al. Evaluation of heavy metal pollution in soil of lead-zinc mine waste land with geological high background[J]. Nonferrous Metals(Extractive Metallurgy), 2019(2):76-82.

    LIU X Y, LIU P Z, DU Q L, et al. Evaluation of heavy metal pollution in soil of lead-zinc mine waste land with geological high background[J]. Nonferrous Metals(Extractive Metallurgy), 2019(2): 76-82.

    [3]

    高月, 孙荣国, 叶彩, 等. 贵州省丹寨县某铅锌矿区土壤重金属污染生态风险评价[J]. 生态学杂志, 2020, 39(3):928-936. GAO Y, SUN R G, YE C, et al. Ecological risk assessment of heavy metal pollution in soil of a lead-zinc mine area in Dan zhai county, Guizhou province, China[J]. Chinese Journal of Ecology, 2020, 39(3):928-936.

    GAO Y, SUN R G, YE C, et al. Ecological risk assessment of heavy metal pollution in soil of a lead-zinc mine area in Dan zhai county, Guizhou province, China[J]. Chinese Journal of Ecology, 2020, 39(3): 928-936.

    [4]

    罗谦, 李英菊, 秦樊鑫, 等. 铅锌矿区周边耕地土壤团聚体重金属污染状况及风险评估[J]. 生态环境学报, 2020, 29(3):605-614. LUO Q, LI Y J, QIN F X, et al. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area[J]. Ecology and Environmental Sciences, 2020, 29(3):605-614.

    LUO Q, LI Y J, QIN F X, et al. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area [J]. Ecology and Environmental Sciences, 2020, 29(3): 605-614.

    [5]

    张永康, 冯乃琦, 张耀, 等. 某铅锌矿区土壤重金属污染分析[J]. 有色金属(冶炼部分), 2021(3):102-108. ZHANG Y K, FENG N Q, ZHANG Y, et al. Analysis of heavy metal pollution in soil of a lead-zinc mining area[J]. Nonferrous Metals(Extractive Metallurgy), 2021(3):102-108.

    ZHANG Y K, FENG N Q, ZHANG Y, et al. Analysis of heavy metal pollution in soil of a Lead-zinc mining area [J]. Nonferrous Metals(Extractive Metallurgy), 2021(3): 102-108.

    [6]

    孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤茶树体系中重金属的生物有效性[J]. 环境化学, 2020, 39(10):2765-2776. SUN J W, HU G R, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, 39(10):2765-2776.

    SUN J W, HU G R, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden [J]. Environmental Chemistry, 2020, 39(10): 2765-2776.

    [7]

    邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9.

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 1-9.

    [8]

    李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    [9]

    来雪慧, 刘子婧, 闫彩, 等. 太原市郊区农田土壤重金属的形态特征及其风险分析[J]. 山东农业大学学报(自然科学版), 2020, 51(2):242-248. LAI X H, LIU Z J, YAN C, et al. Morphological characteristics and risk analysis of heavy metals in farmland soil in the suburb of Taiyuan[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(2):242-248.

    LAI X H, LIU Z J, YAN C, et al. Morphological characteristics and risk analysis of heavy metals in farmland soil in the suburb of Taiyuan [J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(2): 242-248.

    [10]

    罗丽萍, 刘应冬, 范良千. 攀枝花地区煤矸石中重金属元素浸出行为研究[J]. 矿产综合利用, 2021(4):59-65. LUO L P, LIU Y D, FAN L Q. Leaching behavior of main heavy metal from coal gangue in the Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2021(4):59-65.

    LUO L P, LIU Y D, FAN L Q. Leaching behavior of main heavy metal from coal gangue in the Panzhihua [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 59-65.

    [11]

    蔡奎, 张蒨, 吴云霞, 等. 河北平原农田土壤重金属形态分布特征及控制因素研究[J]. 生态毒理学报, 2017, 12(2):155-168. CAI K, ZHANG Q, WU Y X, et al. Speciation distribution and its influencing factors of Cd, Cr, Pb, As, Hg in farmland soil from Heibei Plain, China[J]. Asian Journal of Ecotoxicology, 2017, 12(2):155-168. doi: 10.7524/AJE.1673-5897.20160321010

    CAI K, ZHANG Q, WU Y X, et al. Speciation distribution and its influencing factors of Cd, Cr, Pb, As, Hg in farmland soil from Heibei Plain, China [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 155-168. doi: 10.7524/AJE.1673-5897.20160321010

    [12]

    张家春, 曾宪平, 张珍明, 等. 喀斯特林地土壤重金属形态特征及其评价[J]. 水土保持研究, 2019, 26(6):347-358. ZHANG J C, ZENG X P, ZHANG Z M, et al. Characteristics and evaluation of speciation of heavy metals in forest soils of Karst[J]. Research of Soil and Water Conservation, 2019, 26(6):347-358.

    ZHANG J C, ZENG X P, ZHANG Z M, et al. Characteristics and evaluation of speciation of heavy metals in forest soils of Karst [J]. Research of Soil and Water Conservation, 2019, 26(6): 347-358.

    [13]

    张永利, 刘晓文, 陈启敏, 等. Tessier法和改进BCR法提取施加熟污泥后黄土中Cd的对比研究[J]. 环境工程, 2019, 37(5):34-38. ZHANG Y L, LIU X W, CHEN Q M, et al. Comparative study of tessier method and modified BCR method for extractine Cd in loess amended by composted sludge[J]. Environmental Engineering, 2019, 37(5):34-38.

    ZHANG Y L, LIU X W, CHEN Q M, et al. Comparative study of tessier method and modified BCR method for extractine Cd in loess amended by composted sludge[J]. Environmental Engineering, 2019, 37(5): 34-38.

    [14]

    胡德新, 武素茹, 刘跃勇, 等. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J]. 岩矿测试, 2014, 33(3):369-373. HU D X, WU S R, LIU Y Y, et al. Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J]. Rock and Mineral Analysis, 2014, 33(3):369-373.

    HU D X, WU S R, LIU Y Y, et al. Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J]. Rock and Mineral Analysis, 2014, 33(3): 369-373.

    [15]

    RAURET G, LOPEZ-SCANCHEZ J F, SAHUQUILO A, et al. Improvement of the BCR three step sequential extractionprocedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999(1):57-61.

    [16]

    相微微, 李夏隆, 严加坤, 等. 榆林煤气化渣重金属生物有效性评价[J]. 农业环境科学学报, 2021(5):1097-1105. XIANG W W, LI X L, YAN J K, et al. Bioavailability evaluation of heavy metals in Yulin coal gasification slag[J]. Journalof Agro-Environment Science, 2021(5):1097-1105.

    XIANG W W, LI X L, YAN J K, etal. Bioavailability evaluation of heavy metals in Yulin coal gasification slag[J]. Journalof Agro-Environment Science, 2021(5): 1097-1105.

    [17]

    张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5):726-738. ZHANG S, YU Y, WANG D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining aea of Southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5):726-738.

    ZHANG S, YU Y, WANG D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining aea of Southern Jiangxi, China [J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.

    [18]

    陈静生, 董林, 邓宝山, 等. 铜在沉积物各相中分配的实验模拟与数值模拟研究-以鄱阳湖为例[J]. 环境科学学报, 1987, 7(2):140-149. CHEN J S, DONG L, DENG B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 1987, 7(2):140-149.

    CHEN J S, DONG L, DENG B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 1987, 7(2): 140-149.

    [19]

    林海, 李洁, 董颖博. 粒度对石煤钒矿废石重金属静态淋溶的影响规律[J]. 稀有金属, 2017, 41(6):693-700. LIN H, LI J, DONG Y B. Heavy metal static leaching rules affected by different particle sizes of vanadium waste rock[J]. Chinese Journal of Rare Metals, 2017, 41(6):693-700.

    LIN H, LI J, DONG Y B. Heavy metal static leaching rules affected by different particle sizes of vanadium waste rock[J]. Chinese Journal of Rare Metals, 2017, 41(6): 693-700.

    [20]

    艾艳君, 卢赛, 李富平, 等. 施加污泥堆肥对铅锌尾矿中黑麦草长势及重金属稳定性影响[J]. 矿产综合利用, 2021, 8(4):29-35. AI Y J, LU S, LI F P, et al. Effect of sewage sludge compost addition on stabilization of heavy metal and growth of ryegrass in lead/zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2021, 8(4):29-35.

    AI Y J, LU S, LI F P, et al. Effect of sewage sludge compost addition on stabilization of heavy metal and growth of ryegrass in lead/zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2021, 8(4): 29-35.

    [21]

    王鸣宇, 张雷, 秦延文, 等. 湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J]. 环境科学学报, 2011, 31(11):2447-2458. WANG M Y, ZHANG L, QIN Y W, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors[J]. Acta Scientiae Circumstantiae, 2011, 31(11):2447-2458.

    WANG M Y, ZHANG L, QIN Y W, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2447-2458.

  • 加载中

(1)

(6)

计量
  • 文章访问数:  1449
  • PDF下载数:  162
  • 施引文献:  0
出版历程
收稿日期:  2021-11-23
刊出日期:  2023-06-25

目录