Speciation Analysis and Risk Assessment of Heavy Metals in the Soil of a Lead-Zinc Mining Area
-
摘要:
这是一篇矿山环境工程领域的论文。土壤重金属污染影响时间长,具有较高的生物毒性,严重威胁人类健康。为了研究铅锌矿区土壤重金属污染现状和评估重金属污染风险,以江西某铅锌矿区为研究对象,采用改进BCR连续提取法分析了某铅锌矿区土壤样品重金属元素(Cu、Pb、Zn、Cd)形态,并对重金属元素相关性进行了研究,利用风险评价编码法和次生相与原生相分布比值法评价了重金属元素的环境风险。结果表明:铅锌矿区土壤中Cu、Zn、Cd、Pb元素全量超标,Cu、Zn、Pb元素以残渣态为主,相较于Cu、Zn、Pb元素,土壤样品中Cd元素酸可提取态含量高,生物有效性强,Cd元素污染严重。矿区土壤样品中Cu、Zn、Pb元素残渣态含量均与全量呈极显著正相关,Cd元素残渣态与全量相关性不显著;酸可提取态中Cu、Zn、Cd、Pb元素含量呈极显著正相关,酸可提取态与pH值呈负相关。风险评价编码法和次生相与原生相分布比值法分析的结论较为一致,均为Cd元素污染严重,环境风险高,Cu、Pb、Zn元素污染较轻,环境风险低。本文可为铅锌矿区土壤重金属污染防治提供参考。
Abstract:This is a paper in the field of mining environmental engineering. Heavy metal pollution in soil has a long-time impact, with high biological toxicity and serious threat on human health. In order to study the present situation of soil heavy metal pollution in a lead-zinc mining area and assess its risk, a lead-zinc mining area was taken in Jiangxi as the study object, and the speciation contents of heavy metal elements (Cu, Pb, Zn, Cd) in the soil samples of a lead-zinc mining area were analyzed by themodified BCR successive extraction, and the correlation of heavy metal elements was studied. The environmental risk of heavy metal elements was evaluated by the method of risk assessment coding (RAC) and ratio of secondary phase and primary phase(RSP). The results showed that: The Cu, Zn, Cd and Pb elements in the soil of the lead-zinc mining area exceeded the standard, and the Cu, Zn and Pb elements were mainly in residual state. Compared with Cu, Zn and Pb, Cd element had a higher content of acid extractable state, and its bioavailability was strong, so the pollution of Cd element was serious. The residual-state contents of Cu, Zn and Pb in the soil samples of the mining area were significantly positively correlated with the total contents, while the residual-state contents of Cd were not significantly correlated with the total contents. The contents of Cu, Zn, Cd and Pb in the acid extractable state were significantly positively correlated, but the contents of acid extractable state was negatively correlated with pH value. The conclusion of risk assessment coding method and ratio method of secondary phase and primary phase was relatively consistent, which showed that the pollution of Cd element was serious with a high environmental risk, while that of Cu, Pb, Zn elements was relatively light with a low environmental risk. This paper is expected to provide reference for the prevention and control of soil heavy metal pollution in the lead-zinc mining area.
-
-
表 1 样品采集信息
Table 1. Sample collection information
矿区位置 样品编号 采样点描述 尾矿库下游 TRYP-1 尾矿库下游约50 m农田,表层土 TRYP-2 尾矿库下游约50 m农田,取样深度40~60 cm TRYP-3 尾矿库下游约50 m农田,取样深度100~120 cm TRYP-4 尾矿库下游约400 m农田内 TRYP-5 尾矿库下游约1600 m农田,表层土 TRYP-6 尾矿库下游约3200 m农田,表层土 TRYP-7 已复垦尾矿库下游约400 m农田,表层土 排土场下游 TRYP-8 排土场下游约400 m荒地,表层土 TRYP-9 排土场下游约1000 m农田内,表层土 TRYP-10 排土场下游约1200 m菜地内,表层土 TRYP-11 排土场下游约1800 m农田内,表层土 对照区 TRYP-12 位于矿区上游约1000 m,基本不受矿区影响,表层土 表 2 样品中重金属含量平均值描述性统计
Table 2. Statistic results of heavy metals in soil
元素 全量 酸可
提取态可还
原态可氧
化态残渣态 回收率*/% 农用地土壤污染风险筛选值
(GB15618-2018)重金属元素
平均超标倍数Cu 59.26 2.37 1.41 7.38 47.73 99.38 50 1.19 Zn 321.09 26.86 13.81 12.24 265.87 99.28 200 1.61 Cd 0.89 0.45 0.14 0.04 0.26 99.52 0.4 2.23 Pb 186.76 8.84 8.58 15.77 152.07 99.19 100 1.87 注:表2中重金属元素含量平均值和标准限值单位均为mg·kg-1,回收率*=重金属各形态组分含量之和/重金属全量×100% 表 3 重金属元素不同形态含量与全量相关性分析
Table 3. Correlation analysis between different forms and contents of heavy metals elements
元素 因素 全量 酸可提取态 可还原态 可氧化态 残渣态 pH值 Cu 全量 1 酸可提取态 0.619* 1 可还原态 0.218 -0.323 1 可氧化态 0.202 0.034 0.651* 1 残渣态 0.978** 0.575 0.116 0.011 1 pH 0.203 -0.321 0.048 0.073 0.233 1 Zn 全量 1 酸可提取态 0.590* 1 可还原态 0.104 0.314 1 可氧化态 0.153 0.047 0.739** 1 残渣态 0.991** 0.491 0.014 0.108 1 pH -0.102 -0.440 -0.062 0.384 -0.059 1 Cd 全量 1 酸可提取态 0.815** 1 可还原态 0.629* 0.409 1 可氧化态 0.681* 0.502 0.962** 1 残渣态 0.331 -0.054 -0.260 -0.259 1 pH 0.297 -0.114 0.262 0.255 0.481 1 Pb 全量 1 酸可提取态 0.767** 1 可还原态 0.542 0.333 1 可氧化态 0.469 0.377 0.525 1 残渣态 0.995** 0.731** 0.491 0.397 1 pH -0.140 -0.467 -0.150 -0.042 -0.102 1 注:*为显著性相关(显著性水平<0.05),**为极显著性相关(显著性水平<0.01)。 表 4 相同提取态下重金属元素相关性分析
Table 4. Correlation analysis of heavy metals elements in the same form
元素形态 因素 Cu Zn Cd Pb pH值 酸可提取态 Cu 1 Zn 0.836** 1 Cd 0.641* 0.820** 1 Pb 0.717** 0.851** 0.705** 1 pH -0.321 -0.440 -0.114 -0.467 1 可还原态 Cu 1 Zn 0.166 1 Cd -0.188 0.076 1 Pb 0.197 0.006 0.010 1 pH 0.048 -0.062 0.262 -0.150 1 可氧化态 Cu 1 Zn 0.596* 1 Cd 0.232 0.603* 1 Pb 0.452 0.674* 0.690* 1 pH 0.073 0.384 0.255 -0.042 1 残渣态 Cu 1 Zn 0.816** 1 Cd 0.443 0.166 1 Pb 0.751** 0.856** 0.185 1 pH 0.233 -0.059 0.481 -0.102 1 全量 Cu 1 Zn 0.839** 1 Cd 0.527 0.619* 1 Pb 0.737** 0.838** 0.453 1 pH 0.203 -0.102 0.297 -0.140 1 注:*为显著性相关(显著性水平<0.05),**为极显著性相关(显著性水平<0.01)。 表 5 土壤重金属RAC值与风险程度
Table 5. RAC values and risk of heavy metals in soil
元素 RAC平均值/% RAC<1% 1%≤RAC<10% 10%≤RAC<30% 30%≤RAC<50% RAC≥50% 数量 比例/% 数量 比例/% 数量 比例/% 数量 比例/% 数量 比例/% Cu 4.02 1 8.33 11 91.67 0 0 0 0 0 0 Zn 8.32 0 0 8 66.67 4 33.33 0 0 0 0 Cd 51.05 0 0 0 0 1 8.33 6 50.00 5 41.67 Pb 3.60 0 0 11 91.67 1 8.33 0 0 0 0 风险等级 无风险 低风险 中等风险 高度风险 极高风险 表 6 土壤重金属RSP值与污染程度
Table 6. RSP values and pollution degree of soil heavy metals
元素 RSP平均值 RSP<1 1≤RSP<2 2≤RSP<3 RSP≥3 数量 比例/% 数量 比例/% 数量 比例% 数量 比例/% Cu 0.31 11 91.67 1 8.33 0 0 0 0 Zn 0.29 12 100 0 0 0 0 0 0 Cd 6.80 1 8.33 4 33.34 1 8.33 6 50.00 Pb 0.31 12 100 0 0 0 0 0 0 风险等级 无 轻度 中度 重度 -
[1] 王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 2021, 41(8):3693-3703. WANG Q L, SONG Y T, WANG C W, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 2021, 41(8):3693-3703. doi: 10.3969/j.issn.1000-6923.2021.08.026
WANG Q L, SONG Y T, WANG C W, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 2021, 41(8): 3693-3703. doi: 10.3969/j.issn.1000-6923.2021.08.026
[2] 刘晓媛, 刘品祯, 杜启露, 等. 地质高背景区铅锌矿废弃地土壤重金属污染评价[J]. 有色金属(冶炼部分), 2019(2):76-82. LIU X Y, LIU P Z, DU Q L, et al. Evaluation of heavy metal pollution in soil of lead-zinc mine waste land with geological high background[J]. Nonferrous Metals(Extractive Metallurgy), 2019(2):76-82.
LIU X Y, LIU P Z, DU Q L, et al. Evaluation of heavy metal pollution in soil of lead-zinc mine waste land with geological high background[J]. Nonferrous Metals(Extractive Metallurgy), 2019(2): 76-82.
[3] 高月, 孙荣国, 叶彩, 等. 贵州省丹寨县某铅锌矿区土壤重金属污染生态风险评价[J]. 生态学杂志, 2020, 39(3):928-936. GAO Y, SUN R G, YE C, et al. Ecological risk assessment of heavy metal pollution in soil of a lead-zinc mine area in Dan zhai county, Guizhou province, China[J]. Chinese Journal of Ecology, 2020, 39(3):928-936.
GAO Y, SUN R G, YE C, et al. Ecological risk assessment of heavy metal pollution in soil of a lead-zinc mine area in Dan zhai county, Guizhou province, China[J]. Chinese Journal of Ecology, 2020, 39(3): 928-936.
[4] 罗谦, 李英菊, 秦樊鑫, 等. 铅锌矿区周边耕地土壤团聚体重金属污染状况及风险评估[J]. 生态环境学报, 2020, 29(3):605-614. LUO Q, LI Y J, QIN F X, et al. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area[J]. Ecology and Environmental Sciences, 2020, 29(3):605-614.
LUO Q, LI Y J, QIN F X, et al. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area [J]. Ecology and Environmental Sciences, 2020, 29(3): 605-614.
[5] 张永康, 冯乃琦, 张耀, 等. 某铅锌矿区土壤重金属污染分析[J]. 有色金属(冶炼部分), 2021(3):102-108. ZHANG Y K, FENG N Q, ZHANG Y, et al. Analysis of heavy metal pollution in soil of a lead-zinc mining area[J]. Nonferrous Metals(Extractive Metallurgy), 2021(3):102-108.
ZHANG Y K, FENG N Q, ZHANG Y, et al. Analysis of heavy metal pollution in soil of a Lead-zinc mining area [J]. Nonferrous Metals(Extractive Metallurgy), 2021(3): 102-108.
[6] 孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤茶树体系中重金属的生物有效性[J]. 环境化学, 2020, 39(10):2765-2776. SUN J W, HU G R, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, 39(10):2765-2776.
SUN J W, HU G R, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden [J]. Environmental Chemistry, 2020, 39(10): 2765-2776.
[7] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9.
DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 1-9.
[8] 李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006
LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006
[9] 来雪慧, 刘子婧, 闫彩, 等. 太原市郊区农田土壤重金属的形态特征及其风险分析[J]. 山东农业大学学报(自然科学版), 2020, 51(2):242-248. LAI X H, LIU Z J, YAN C, et al. Morphological characteristics and risk analysis of heavy metals in farmland soil in the suburb of Taiyuan[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(2):242-248.
LAI X H, LIU Z J, YAN C, et al. Morphological characteristics and risk analysis of heavy metals in farmland soil in the suburb of Taiyuan [J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(2): 242-248.
[10] 罗丽萍, 刘应冬, 范良千. 攀枝花地区煤矸石中重金属元素浸出行为研究[J]. 矿产综合利用, 2021(4):59-65. LUO L P, LIU Y D, FAN L Q. Leaching behavior of main heavy metal from coal gangue in the Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2021(4):59-65.
LUO L P, LIU Y D, FAN L Q. Leaching behavior of main heavy metal from coal gangue in the Panzhihua [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 59-65.
[11] 蔡奎, 张蒨, 吴云霞, 等. 河北平原农田土壤重金属形态分布特征及控制因素研究[J]. 生态毒理学报, 2017, 12(2):155-168. CAI K, ZHANG Q, WU Y X, et al. Speciation distribution and its influencing factors of Cd, Cr, Pb, As, Hg in farmland soil from Heibei Plain, China[J]. Asian Journal of Ecotoxicology, 2017, 12(2):155-168. doi: 10.7524/AJE.1673-5897.20160321010
CAI K, ZHANG Q, WU Y X, et al. Speciation distribution and its influencing factors of Cd, Cr, Pb, As, Hg in farmland soil from Heibei Plain, China [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 155-168. doi: 10.7524/AJE.1673-5897.20160321010
[12] 张家春, 曾宪平, 张珍明, 等. 喀斯特林地土壤重金属形态特征及其评价[J]. 水土保持研究, 2019, 26(6):347-358. ZHANG J C, ZENG X P, ZHANG Z M, et al. Characteristics and evaluation of speciation of heavy metals in forest soils of Karst[J]. Research of Soil and Water Conservation, 2019, 26(6):347-358.
ZHANG J C, ZENG X P, ZHANG Z M, et al. Characteristics and evaluation of speciation of heavy metals in forest soils of Karst [J]. Research of Soil and Water Conservation, 2019, 26(6): 347-358.
[13] 张永利, 刘晓文, 陈启敏, 等. Tessier法和改进BCR法提取施加熟污泥后黄土中Cd的对比研究[J]. 环境工程, 2019, 37(5):34-38. ZHANG Y L, LIU X W, CHEN Q M, et al. Comparative study of tessier method and modified BCR method for extractine Cd in loess amended by composted sludge[J]. Environmental Engineering, 2019, 37(5):34-38.
ZHANG Y L, LIU X W, CHEN Q M, et al. Comparative study of tessier method and modified BCR method for extractine Cd in loess amended by composted sludge[J]. Environmental Engineering, 2019, 37(5): 34-38.
[14] 胡德新, 武素茹, 刘跃勇, 等. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J]. 岩矿测试, 2014, 33(3):369-373. HU D X, WU S R, LIU Y Y, et al. Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J]. Rock and Mineral Analysis, 2014, 33(3):369-373.
HU D X, WU S R, LIU Y Y, et al. Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J]. Rock and Mineral Analysis, 2014, 33(3): 369-373.
[15] RAURET G, LOPEZ-SCANCHEZ J F, SAHUQUILO A, et al. Improvement of the BCR three step sequential extractionprocedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999(1):57-61.
[16] 相微微, 李夏隆, 严加坤, 等. 榆林煤气化渣重金属生物有效性评价[J]. 农业环境科学学报, 2021(5):1097-1105. XIANG W W, LI X L, YAN J K, et al. Bioavailability evaluation of heavy metals in Yulin coal gasification slag[J]. Journalof Agro-Environment Science, 2021(5):1097-1105.
XIANG W W, LI X L, YAN J K, etal. Bioavailability evaluation of heavy metals in Yulin coal gasification slag[J]. Journalof Agro-Environment Science, 2021(5): 1097-1105.
[17] 张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5):726-738. ZHANG S, YU Y, WANG D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining aea of Southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5):726-738.
ZHANG S, YU Y, WANG D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining aea of Southern Jiangxi, China [J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.
[18] 陈静生, 董林, 邓宝山, 等. 铜在沉积物各相中分配的实验模拟与数值模拟研究-以鄱阳湖为例[J]. 环境科学学报, 1987, 7(2):140-149. CHEN J S, DONG L, DENG B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 1987, 7(2):140-149.
CHEN J S, DONG L, DENG B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 1987, 7(2): 140-149.
[19] 林海, 李洁, 董颖博. 粒度对石煤钒矿废石重金属静态淋溶的影响规律[J]. 稀有金属, 2017, 41(6):693-700. LIN H, LI J, DONG Y B. Heavy metal static leaching rules affected by different particle sizes of vanadium waste rock[J]. Chinese Journal of Rare Metals, 2017, 41(6):693-700.
LIN H, LI J, DONG Y B. Heavy metal static leaching rules affected by different particle sizes of vanadium waste rock[J]. Chinese Journal of Rare Metals, 2017, 41(6): 693-700.
[20] 艾艳君, 卢赛, 李富平, 等. 施加污泥堆肥对铅锌尾矿中黑麦草长势及重金属稳定性影响[J]. 矿产综合利用, 2021, 8(4):29-35. AI Y J, LU S, LI F P, et al. Effect of sewage sludge compost addition on stabilization of heavy metal and growth of ryegrass in lead/zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2021, 8(4):29-35.
AI Y J, LU S, LI F P, et al. Effect of sewage sludge compost addition on stabilization of heavy metal and growth of ryegrass in lead/zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2021, 8(4): 29-35.
[21] 王鸣宇, 张雷, 秦延文, 等. 湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J]. 环境科学学报, 2011, 31(11):2447-2458. WANG M Y, ZHANG L, QIN Y W, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors[J]. Acta Scientiae Circumstantiae, 2011, 31(11):2447-2458.
WANG M Y, ZHANG L, QIN Y W, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2447-2458.
-