封闭酸溶—泡塑富集火焰原子吸收光谱法测定矿石中金

邵坤, 范建雄, 郑浩, 余浩. 封闭酸溶—泡塑富集火焰原子吸收光谱法测定矿石中金[J]. 矿产综合利用, 2023, 44(4): 182-187. doi: 10.3969/j.issn.1000-6532.2023.04.028
引用本文: 邵坤, 范建雄, 郑浩, 余浩. 封闭酸溶—泡塑富集火焰原子吸收光谱法测定矿石中金[J]. 矿产综合利用, 2023, 44(4): 182-187. doi: 10.3969/j.issn.1000-6532.2023.04.028
Shao Kun, Fan Jianxiong, Zheng Hao, Yu Hao. Determination of Gold in Ore Samples by Flame Atomic Absorption Spectrometry of Sealed Dissolution after Adsorption using Polyurethane Foam[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 182-187. doi: 10.3969/j.issn.1000-6532.2023.04.028
Citation: Shao Kun, Fan Jianxiong, Zheng Hao, Yu Hao. Determination of Gold in Ore Samples by Flame Atomic Absorption Spectrometry of Sealed Dissolution after Adsorption using Polyurethane Foam[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 182-187. doi: 10.3969/j.issn.1000-6532.2023.04.028

封闭酸溶—泡塑富集火焰原子吸收光谱法测定矿石中金

  • 基金项目: 中国地质调查局地质大调查项目(DD20221809);四川省科技计划项目(2023YFQ0062)
详细信息
    作者简介: 邵坤(1983-),男,硕士,高级工程师,主要从事岩矿测试工作
  • 中图分类号: TD982;P575

Determination of Gold in Ore Samples by Flame Atomic Absorption Spectrometry of Sealed Dissolution after Adsorption using Polyurethane Foam

  • 这是一篇矿物分析领域的论文。试样焙烧后采用50%王水水浴封闭溶样,用0.25 g泡塑振荡富集样品中的金,泡塑用水冲洗去除矿渣和酸后,采用1%硫脲对金进行热解脱,建立了封闭酸溶—泡塑富集火焰原子吸收光谱法测定矿石中金的方法。实验讨论了部分含金矿石样品的焙烧处理方法;考查了封闭溶样时间、泡塑前处理方法、富集温度、测定液温度等影响因素,结果表明:封闭酸溶时间为2 h,可满足常见含金矿石样品中金的分解,泡塑经5%HCl处理后,在室温下对金的富集回收率达到了95%以上,测定过程中应确保测定液温度、标准溶液温度与室温相一致。金标准溶液按照实验方法进行富集与解脱处理制备而成。在选定的实验条件下,方法检出限为0.13 μg/g,定量限为0.43 μg/g,测定上限为80 μg/g。方法加标回收率为98.7%~101%,精密度(RSD,n=5)为1.10%~2.07%。应用本方法对含金矿石标准物质及标准参考样品中的金进行测定,测定值与认定值基本一致。

  • 加载中
  • 图 1  溶样时间对金回收率的影响

    Figure 1. 

    图 2  泡塑前处理方式对金回收率的影响

    Figure 2. 

    图 3  溶液温度对金回收率的影响

    Figure 3. 

    图 4  测定液温度对金吸光度的影响

    Figure 4. 

    图 5  金的标准曲线

    Figure 5. 

    图 6  泡塑富集金的趋势线

    Figure 6. 

    表 1  部分特殊含金矿样的焙烧处理方法

    Table 1.  Method of roasting treatment for some special gold ore samples

    矿石类型 存在问题 解决方法
    高砷矿石 高于600 ℃,砷与金易形成低沸点的As-Au合金而挥发 400 ℃保温2 h,砷充分氧化挥发,再650 ℃焙烧
    高锑矿石 易烧结成块,不易分解,锑易水解,干扰富集 样品与氯化铵(锑量3倍)混合焙烧除锑
    方铅矿、铅精矿 硫化铅中硫难以用焙烧法去除,分解时易析出硫磺包裹金 浓硝酸和逆王水消除硫和氯化铅干扰,
    或采用火试金富集
    黄铁矿、毒砂 焙烧后形成高价氧化铁包裹金,不易分解 先用浓盐酸分解氧化铁,再用王水分解金
    钼精矿、钨精矿 焙烧后不易分解,酸溶时形成钨酸、钼酸胶状物,干扰富集和解脱 热氨水除钨、钼,残渣用王水分解
    矽卡岩样品 含大量可溶性硅酸盐,酸溶后析出大量硅酸,干扰富集 样品与氟化氢铵或氟化铵混合焙烧除硅
    石英包裹样品 金被石英包裹不易溶出 焙烧后冷淬,或加入氟化物破坏石英包裹体,再用王水分解
    下载: 导出CSV

    表 2  加标回收实验结果

    Table 2.  Results of standard recovery tests

    样品认定值/(μg/g)加标量/(μg/g)测定值/(μg/g)回收率/%
    GAu-225.72510.6598.7
    GAu-1810.41020.51101
    GAu-1918.32038.2399.6
    下载: 导出CSV

    表 3  方法精密度结果

    Table 3.  Results of precision tests

    样品标准值测定值/(μg/g)平均
    值X
    标准
    偏差S
    相对标准偏差RSD%
    12345
    GAu-173.23.323.293.153.253.303.260.0682.07
    GAu-1810.610.7310.6510.8610.5410.4910.660.1421.33
    GAu-2032.331.6532.4832.4531.9232.1932.140.3551.10
    下载: 导出CSV

    表 4  方法准确度结果

    Table 4.  Results of accuracy tests

    标样号认定值/(μg/g)测定值/(μg/g)
    MG1-Au-013.593.54
    MG1-Au-027.617.75
    MG1-Au-0314.013.86
    GAu-161.101.19
    GAu-173.33.36
    GAu-1810.49.89
    GAu-1918.318.42
    GAu-2032.333.07
    GAu-215352.62
    GAu-225.726.04
    GS-Pt-21.431.31
    GS-Pt-31.451.38
    GS-Pt-42.122.16
    下载: 导出CSV
  • [1]

    薛光. 金的分析化学[M]. 北京: 宇航出版社, 1990.

    XUE G. Analytical chemistry of gold[M]. Beijing: Yuhang Publishing House, 1990.

    [2]

    邱曼,黄学雄,毛益林,等. 我国金矿资源概况及选冶技术研究进展[J]. 矿产综合利用, 2023(2):106-115. QIU M, HUANG X X, MAO Y L. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(2):106-115.

    QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J],Multipurpose Utilization of Mineral Resources, 2023(2):106-115.

    [3]

    庄艾春, 肖红新. 铅试金富集-火焰原子吸收光谱法测定含金工业污泥中的金[J]. 黄金, 2018, 39(6):75-77. ZHUANG A C, XIAO H X. Determination of gold in gold-bearing industrial sludge by lead assay enrichment-fire atomic absorption spectrometry[J]. Gold, 2018, 39(6):75-77.

    ZHUANG A C, XIAO H X. Determination of gold in gold-bearing industrial sludge by lead assay enrichment-fire atomic absorption spectrometry[J]. Gold, 2018, 39(6): 75-77.

    [4]

    吴晶, 张明杰, 熊玉祥. 密闭水浴溶矿-泡塑吸附等离子体质谱法高效测定地质样品中的痕量金[J]. 华中师范大学学报(自然科学版), 2017, 51(5):626-637. WU J, ZHANG M J, XIONG Y X. Determination of trace gold in geological samples combining foam adsorption inductively coupled plasma-mass spectrometry with closed water bath dissolution[J]. Journal of Central China Normal University(Nat. Sci. ), 2017, 51(5):626-637.

    WU J, ZHANG M J, XIONG Y X. Determination of trace gold in geological samples combining foam adsorption inductively coupled plasma-mass spectrometry with closed water bath dissolution[J]. Journal of Central China Normal University(Nat. Sci. ), 2017, 51(5): 626-637.

    [5]

    高升, 柳诚, 陈洪流, 等. 蒸汽浴封闭溶样-石墨炉原子吸收法测定化探样品中的痕量金[J]. 黄金, 2017, 38(12):65-68. GAO S, LIU C, CHEN H L, et al. Determination of trace gold in geochemical samples by GFAAS with pressurized sample decomposition in steam bath[J]. Gold, 2017, 38(12):65-68.

    GAO S, LIU C, CHEN H L, et al. Determination of trace gold in geochemical samples by GFAAS with pressurized sample decomposition in steam bath[J]. Gold, 2017, 38(12): 65-68.

    [6]

    邱红绪, 杨建博, 边朋沙, 等. 蒸汽加热消解-电感耦合等离子体质谱法测定化探样品中痕量金[J]. 冶金分析, 2019, 39(12):31-37. QIU H X, YANG J B, BIAN P S, et al. Determination of trace gold in geochemical sample by inductively coupled plasma mass spectrometry with steam heating digestion[J]. Metallurgical Analysis, 2019, 39(12):31-37.

    QIU H X, YANG J B, BIAN P S, et al. Determination of trace gold in geochemical sample by inductively coupled plasma mass spectrometry with steam heating digestion[J]. Metallurgical Analysis, 2019, 39(12): 31-37.

    [7]

    邱宏喜, 王志杰, 王达成, 等. 封闭溶样-AAS法测定特高品位矿石中的金银[J]. 黄金, 2014, 35(3):80-84. QIU H X, WANG Z J, WANG D C, et al. Determination of Au and Ag in high grade ores by sealed dissolution-AAS method[J]. Gold, 2014, 35(3):80-84.

    QIU H X, WANG Z J, WANG D C, et al. Determination of Au and Ag in high grade ores by sealed dissolution-AAS method[J]. Gold, 2014, 35(3): 80-84.

    [8]

    多昊伟. 活性炭吸附-原子吸收法测金在塔吉克斯坦金矿的应用[J]. 中国矿业, 2018, 27(6):100-102. DUO H W. The application of activated carbon adsorption-atomic absorption spectrometry in Tajikistan gold mine[J]. China Mining Magazine, 2018, 27(6):100-102.

    DUO H W. The application of activated carbon adsorption-atomic absorption spectrometry in Tajikistan gold mine[J]. China Mining Magazine, 2018, 27(6): 100-102.

    [9]

    孔会民. 聚氨酯泡沫塑料吸附-火焰原子吸收光谱法测定铜选矿流程样品中金[J]. 冶金分析, 2017, 37(3):29-33. KONG H M. Determination of gold in beneficiation process sample of copper by atomic absorption spectrometry after polyurethane foam plastic adsorption[J]. Metallurgical Analysis, 2017, 37(3):29-33.

    KONG H M. Determination of gold in beneficiation process sample of copper by atomic absorption spectrometry after polyurethane foam plastic adsorption[J]. Metallurgical Analysis, 2017, 37(3): 29-33.

    [10]

    申玉民, 罗治定, 郭小彪, 等. 泡塑分离富集-火焰原子荧光光谱法测定地球化学样品中的痕量金[J]. 岩矿测试, 2020, 31(1):127-134. SHEN Y M, LUO Z D, GUO X B, et al. Determination of trace gold in geochemical samples by flame atomic fluoresce spectrometry with PUFP separation and enrichment[J]. Rock and Mineral Analysis, 2020, 31(1):127-134.

    SHEN Y M, LUO Z D, GUO X B, et al. Determination of trace gold in geochemical samples by flame atomic fluoresce spectrometry with PUFP separation and enrichment[J]. Rock and Mineral Analysis, 2020, 31(1): 127-134.

    [11]

    符招弟, 傅饶, 杨炳红. 分相浸出-火焰原子吸收光谱法测定高硫高砷金矿石及选冶物料中金的赋存状态[J]. 冶金分析, 2015, 35(11):23-27. FU Z D, FU R, YANG B H. Application of phase separation leaching-flame atomic absorption spectrometry to the determination of occurrence state of gold in high-sulfur high-arsenic gold ore and smelting materials[J]. Metallurgical Analysis, 2015, 35(11):23-27.

    FU Z D, FU R, YANG B H. Application of phase separation leaching-flame atomic absorption spectrometry to the determination of occurrence state of gold in high-sulfur high-arsenic gold ore and smelting materials[J]. Metallurgical Analysis, 2015, 35(11): 23-27.

    [12]

    文田耀, 孙文军, 周瑶, 等. 封闭溶样-原子吸收法测定钼精矿中的金[J]. 黄金, 2013, 34(8):78-80. WEN T Y, SUN W J, ZHOU Y, et al. Determination of gold in molybdenum concentrates by AAS with sealed dissolution[J]. Gold, 2013, 34(8):78-80.

    WEN T Y, SUN W J, ZHOU Y, et al. Determination of gold in molybdenum concentrates by AAS with sealed dissolution[J]. Gold, 2013, 34(8):78-80.

    [13]

    王干珍, 严慧, 易晓明, 等. 氯化铵除锑-电感耦合等离子体质谱法测定锑矿石中的金[J]. 理化检验-化学分册, 2016, 52(3):342-344. WANG G Z, YAN H, YI X M, et al. Determination of gold in antimony ore by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2016, 52(3):342-344.

    WANG G Z, YAN H, YI X M, et al. Determination of gold in antimony ore by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2016, 52(3): 342-344.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1167
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2021-11-02
修回日期:  2021-12-18
刊出日期:  2023-08-25

目录