Research Status of the Properties and Application in Building Materials of Typical Lithium Slag
-
摘要:
这是一篇陶瓷及复合材料领域的论文。锂渣是锂辉石和锂云母提锂及其化合物过程中产生的废渣,其SiO2和Al2O3含量达70%。因残留的化学物质,锂渣堆放和填埋威胁着周边环境,也造成铝硅酸盐矿物资源的浪费。锂渣经过高温焙烧、机械磨碎和化学浸出,具有高比表面能和一定火山灰活性,可以用作建筑材料。本文综述了近年来国内外针对锂渣应用于建筑材料的最新研究成果,重点包括以下几个方面:(1)代替部分水泥做混凝土掺料,对混凝土的力学性能、抗碳化性能、耐磨性、抗氯离子渗透和抗裂性能的影响;(2)锂渣代替粘土生产水泥,对水泥熟料龄期抗折和抗压强度的影响;(3)制备建筑陶粒及力学性能和结构的影响;(4)锂渣配方对陶瓷工艺性能和质量的影响。最后对锂渣在建筑材料的应用研究进行了归纳总结并对研究前景进行了展望,以期能够为开发锂渣在建筑材料掺入量高、经济效益好的应用途径提供借鉴与参考。
Abstract:This is an essay in the field of ceramics and composites. Lithium slag is the solid waste produced in the process of extracting lithium and its compounds from spodumene and lepidolite, in which the content of SiO2 and Al2O3 is as high as 70%. The stacking and landfilling of lithium slag threaten the surrounding environment due to the residual chemicals, and result in the waste of aluminosilicate mineral resources as well. Lithium slag has high specific surface energy and some pozzolanic activity, as enduring high temperature roasting, mechanical grinding and chemical leaching, which make it possible to be used as construction materials. This paper summarizes the latest research results on the application of lithium slag as building materials at home and abroad, focuses on the following aspects: (1) Substituting part of cement as concrete admixture, and the affects on the mechanical properties, carbonization resistance, abrasion resistance, chloride ion penetration and crack resistance of concrete; (2) Substituting clay to produce cement, and its influence on the flexural and compressive strength of cement clinker age; (3) Preparation of architectural ceramics and its impact on mechanical properties and structure; (4) The influence of lithium slag formula on ceramic quality and process performance. Finally, the application research of lithium slag in building materials is summarized and prospected, for the purpose of providing references for the development of lithium slag in building materials with high dosage and good economic benefits.
-
-
表 1 锂渣的物理性质
Table 1. Particle size distribution of lepidolite lithium slag
名称 74 µm筛
余/%比表面积/(m2/kg) 密度/(kg/m3) 烧失量/% 锂云母锂渣 8.6 510 2.3 7.65 锂辉石锂渣 4.0 447 2.48 5.35 表 2 锂渣粒度分布/%
Table 2. Particle size distribution of lepidolite lithium slag
粒径 /μm +100 -100+74 -74+45 -45+10 -10 锂云母锂渣/% 1.35 7.66 13.85 13.62 63.52 锂辉石锂渣/% 0.84 3.82 15.36 11.78 68.20 表 3 锂渣的化学成分/%
Table 3. Chemical analysis results of lepidolite lithium slag
名称 SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 Loss 锂云母锂渣 57.73 21.6 0.68 2.03 0.12 0.03 10.68 3.25 3.46 0.42 锂辉石锂渣 54.86 20.83 0.28 5.98 0.25 8.56 4.58 1.24 2.65 0.77 -
[1] 张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略[J]. 无机盐工业, 2020, 52(7):1-7. ZHANG S J, ZHANG Y W, ZHANG L W, et al. Current situation and sustainable development strategy of lithium resources in China[J]. Inorganic Salt Industry, 2020, 52(7):1-7. doi: 10.11962/1006-4990.2020-0028
ZHANG S J, ZHANG Y W, ZHANG L W, et al. Current situation and sustainable development strategy of lithium resources in China [J]. Inorganic Salt Industry, 2020, 52 (7): 1-7 doi: 10.11962/1006-4990.2020-0028
[2] 徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2020(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospect of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2020(5):32-37.
XU Z Z, LIANG J L, LI H, et al. Research status and Prospect of lithium extraction from lithium containing resources [J]. Multipurpose Utilization of Mineral Resources, 2020 (5): 32-37.
[3] 田键, 李涛, 王明焱. 典型锂矿石提锂技术研究进展[J]. 湖北大学学报(自然科学版). 2020, 42(1): 56-60
TIAN J, LI T, WANG M Y. Research progress of lithium extraction technology from typical lithium ore [J]. Journal of Hubei University (Natural Science Edition) 2020, 42(1): 56-60.
[4] 冀成庆, 沈明伟, 朱昌洛, 等. 微波场中锂辉石晶型转化试验研究[J]. 矿产综合利用, 2019(4):79-82. JI C Q, SHEN M W, ZHU C L, et al. Experimental study on crystal transformation of spodumene in microwave field[J]. Multipurpose Utilization of Mineral Resources, 2019(4):79-82. doi: 10.3969/j.issn.1000-6532.2019.04.016
JI C Q, SHEN M W, ZHU C L, et al. Experimental study on crystal transformation of spodumene in microwave field [J]. Multipurpose Utilization of Mineral Resources, 2019 (4): 79-82. doi: 10.3969/j.issn.1000-6532.2019.04.016
[5] Ali S S, Chen B, Ahmad M R, et al. Development of Cleaner One-part geopolymer from lithium slag[J]. Journal of Cleaner Production, 2020: 125-241.
[6] Li J Z, Lian P H, Huang S W, et al. Recycling of lithium slag extracted from lithium mica by preparing white Portland cement[J]. Journal of Environmental Management, 2020, 265:110551.
[7] 李保亮, 尤南乔, 朱国瑞, 等. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24):4072-4077. LI B L, YOU N Q, ZHU G R, et al. Hydration products and mechanical properties of lithium slag composite cement under steam curing[J]. Material Guide, 2019, 33(24):4072-4077. doi: 10.11896/cldb.18120096
LI B L, YOU N Q, ZHU G R, et al. Hydration products and mechanical properties of lithium slag composite cement under steam curing [J]. Material Guide, 2019, 33 (24): 4072-4077. doi: 10.11896/cldb.18120096
[8] 刘晓莉, 肖永贞, 谢幸福, 等. 锂渣在陶瓷釉面砖中的应用研究[J]. 陶瓷, 1998(2): 37-38+42.
LIU X L, XIAO Y Z, XIE X F, et al. Application of lithium slag in ceramic glazed tiles [J]. Ceramics, 1998 (2): 37-38 + 42.
[9] Tan H B, Zhang X, He X Y, et al. Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste[J]. Journal of Cleaner Production, 2018, 205:536-551. doi: 10.1016/j.jclepro.2018.09.027
[10] 吴福飞, 宫经伟, 董双快. 锂渣复合水泥基材料抗硫酸盐侵蚀的性能[J]. 水力发电, 2017, 43(7):112-117. WU F F, GONG J W, DONG S K. Sulfate resistance of lithium slag composite cement-based materials[J]. Hydropower, 2017, 43(7):112-117. doi: 10.3969/j.issn.0559-9342.2017.07.027
WU F F, GONG J W, DONG S K. Sulfate resistance of lithium slag composite cement-based materials [J]. Hydropower, 2017, 43 (7): 112-117. doi: 10.3969/j.issn.0559-9342.2017.07.027
[11] 曾庆玲. 氯盐法锂云母提锂渣复合白色硅酸盐水泥的研究[D]. 南昌: 南昌大学, 2014.
ZENG Q L. Study on white portland cement from lithium mica slag extracted by chloride salt method [D]. Nanchang: Nanchang University, 2014.
[12] 胡赞. 典型矿石提锂工艺介绍及经济效益分析[J]. 盐科学与化工, 2019, 48(3):5-8. HU Z. Introduction of lithium extraction process from typical ore and economic benefit analysis[J]. Salt Science and Chemical Industry, 2019, 48(3):5-8. doi: 10.3969/j.issn.2096-3408.2019.03.003
HU Z. Introduction of lithium extraction process from typical ore and economic benefit analysis [J]. Salt Science and Chemical Industry, 2019, 48 (3): 5-8. doi: 10.3969/j.issn.2096-3408.2019.03.003
[13] 王晨. 锂渣对混凝土中氯离子吸附性作用的研究[D]. 乌鲁木齐: 新疆大学, 2018.
WANG C. Study on the adsorption of lithium slag on chloride ion in concrete [D]. Urumqi: Xinjiang University, 2018.
[14] Wang Y R, Wang D M, Cui Y, et al. Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process[J]. 2019, 203: 304-313.
[15] 巫昊峰. 锂渣-石灰石粉-水泥复合胶凝材料的性能[J]. 硅酸盐通报, 2018, 37(9):2899-2903. WU H F. Properties of lithium slag limestone powder cement composite cementitious material[J]. Silicate Bulletin, 2018, 37(9):2899-2903. doi: 10.16552/j.cnki.issn1001-1625.2018.09.037
WU H F. Properties of lithium slag limestone powder cement composite cementitious material [J]. Silicate Bulletin, 2018, 37 (9): 2899-2903. doi: 10.16552/j.cnki.issn1001-1625.2018.09.037
[16] 董双快, 吴福飞, 王红. 工业废渣替代水泥砂浆细集料的可行性研究[J]. 贵州师范大学学报(自然科学版), 2020, 38(2):101-107. DONG S K, WU F F, WANG H. Feasibility study on industrial waste residue replacing fine aggregate of cement mortar[J]. Journal of Guizhou Normal University (Natural Science Edition), 2020, 38(2):101-107.
DONG S K, WU F F, WANG H. Feasibility study on industrial waste residue replacing fine aggregate of cement mortar [J]. Journal of Guizhou Normal University (Natural Science Edition), 2020, 38 (2): 101-107
[17] HE Z H, DU S G, CHEN D. Microstructure of ultra high performance concrete containing lithium slag[J]. Journal of Hazardous Materials, 2018, 353:35-43. doi: 10.1016/j.jhazmat.2018.03.063
[18] 侯勇辉, 秦拥军, 李振兴. 掺锂渣再生粗骨料混凝土力学性能试验研究[J]. 新型建筑材料, 2016, 43(11): 17-19+42.
HOU Y H, QIN Y J, LI Z X. Experimental study on mechanical properties of recycled coarse aggregate concrete mixed with lithium slag [J]. New Building Materials, 2016, 43 (11): 17-19 + 42.
[19] 刘登贤, 麻鹏飞, 吴鑫, 等. 高性能锂渣混凝土的研究及应用[J]. 混凝土与水泥制品, 2018(1): 96-100.
LIU D X, MA P F, WU X, et al. Research and application of high performance lithium slag concrete [J]. Concrete and Cement Products, 2018 (1): 96-100.
[20] 马丽莎, 温勇, 马蕾. 持续压荷载作用对锂渣混凝土气体渗透性的影响[J]. 混凝土, 2020(1):45-49. MA L S, WEN Y, MA L. Effect of continuous compressive load on gas permeability of lithium slag concrete[J]. Concrete, 2020(1):45-49. doi: 10.3969/j.issn.1002-3550.2020.01.011
MA L S, WEN Y, MA L. Effect of continuous compressive load on gas permeability of lithium slag concrete [J]. Concrete, 2020 (1): 45-49. doi: 10.3969/j.issn.1002-3550.2020.01.011
[21] 何奥希, 陈晋, 李毅恒, 等. 机械活化在矿物浸出过程中的应用研究[J]. 矿产综合利用, 2018(4):1-6. HE A X, CHEN J, LI Y H, et al. Application of mechanical activation in mineral leaching process[J]. Multipurpose Utilization of Mineral Resources, 2018(4):1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001
HE A X, CHEN J, LI Y H, et al. Application of mechanical activation in mineral leaching process [J]. Multipurpose Utilization of Mineral Resources, 2018 (4): 1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001
[22] 祝战奎, 陈剑雄. 超磨细锂渣复合掺和料自密实高强混凝土抗碳化性能研究[J]. 施工技术, 2012, 41(22):40-42. ZHU Z K, CHEN J X. Study on carbonation resistance of self compacting high strength concrete with super ground lithium slag composite admixture[J]. Construction Technology, 2012, 41(22):40-42.
ZHU Z K, CHEN J X. Study on carbonation resistance of self compacting high strength concrete with super ground lithium slag composite admixture [J]. Construction Technology, 2012, 41 (22): 40-42.
[23] 陈鹏. 改性锂渣硅铝酸盐混凝土研究[D]. 重庆: 重庆大学, 2007.
CHEN P. Study on modified lithium slag aluminosilicate concrete [D]. Chongqing: Chongqing University, 2007.
[24] 姚泽群, 武阳, 储宇吉. TEA对锂渣水泥浆体流变性及水化性能的影响[J]. 江西建材, 2020(10):33-34. YAO Z Q, WU Y, CHU Y J. Effect of tea on rheological and hydration properties of lithium slag cement paste[J]. Jiangxi Building Materials, 2020(10):33-34. doi: 10.3969/j.issn.1006-2890.2020.10.018
YAO Z Q, WU Y, CHU Y J. Effect of tea on rheological and hydration properties of lithium slag cement paste [J]. Jiangxi Building Materials, 2020 (10): 33-34. doi: 10.3969/j.issn.1006-2890.2020.10.018
[25] 吕常胜, 王家伟, 贾永真, 等. 页岩掺入量对赤泥烧结砖的影响[J]. 矿产综合利用, 2013(5):39-42. LV C S, WANG J W, JIA Y Z, et al. Effect of shale content on red mud sintered brick[J]. Multipurpose Utilization of Mineral Resources, 2013(5):39-42. doi: 10.3969/j.issn.1000-6532.2013.05.011
LV C S, WANG J W, JIA Y Z, et al. Effect of shale content on red mud sintered brick [J]. Multipurpose Utilization of Mineral Resources, 2013 (5): 39-42. doi: 10.3969/j.issn.1000-6532.2013.05.011
[26] 徐瑞锋, 黄少文, 罗琦. 锂云母提锂渣对水泥基装饰水泥砂浆性能的影响[J]. 非金属矿, 2018, 41(1):27-29. XU R F, HUANG S W, LUO Q. Effect of lithium extraction slag from lepidolite on the properties of cement-based decorative cement mortar[J]. Nonmetallic Ore, 2018, 41(1):27-29. doi: 10.3969/j.issn.1000-8098.2018.01.009
XU R F, HUANG S W, LUO Q. Effect of lithium extraction slag from lepidolite on the properties of cement-based decorative cement mortar [J]. Nonmetallic Ore, 2018, 41 (1): 27-29. doi: 10.3969/j.issn.1000-8098.2018.01.009
[27] 石齐, 黄沙, 梁建军. 不同种类锂渣粉对混凝土性能的影响研究[J]. 江西建材, 2020(S1):31-33. SHI Q, HUANG S, LIANG J J. Study on the influence of different kinds of lithium slag powder on the performance of concrete[J]. Jiangxi Building Materials, 2020(S1):31-33. doi: 10.3969/j.issn.1006-2890.2020.z1.011
SHI Q, HUANG S, LIANG J J. Study on the influence of different kinds of lithium slag powder on the performance of concrete [J]. Jiangxi Building Materials, 2020 (S1): 31-33. doi: 10.3969/j.issn.1006-2890.2020.z1.011
[28] 李春红, 费文斌. 锂渣在水泥工业中的应用研究[J]. 水泥技术, 2001(5):57-58. LI C H, FEI W B. Application of lithium slag in cement industry[J]. Cement Technology, 2001(5):57-58. doi: 10.3969/j.issn.1001-6171.2001.05.017
LI C H, FEI W. Application of lithium slag in cement industry [J]. Cement Technology, 2001 (5): 57-58 doi: 10.3969/j.issn.1001-6171.2001.05.017
[29] 黄少文, 曾庆玲. 利用锂云母提锂渣制备复合白色硅酸盐水泥:201410151900.6[P].
HUANG S W, ZENG Q L. Preparation of composite white portland cement from lithium mica slag: Chinese national patent Application No. : 20141015900.6[P].
[30] 钟路生, 聂复南. 一种锂渣轻质陶瓷板材的制作方法: CN109053150A[P]. 2018-12-21.
ZHONG L S, NIE F N. A manufacturing method of lithium slag light ceramic plate: cn109053150a[P], December 21, 2018.
[31] 郁兴国, 胡玉, 符龙, 等. 云母浸出渣对陶瓷体白度的影响探究[J]. 江西化工, 2018(5):67-69. YU X G, HU Y, FU L, et al. Influence of mica leaching residue on whiteness of ceramics[J]. Jiangxi Chemical Industry, 2018(5):67-69. doi: 10.14127/j.cnki.jiangxihuagong.2018.05.023
YU X G, HU Y, FU L, et al. Influence of mica leaching residue on whiteness of ceramics [J]. Jiangxi Chemical Industry, 2018 (5): 67-69. doi: 10.14127/j.cnki.jiangxihuagong.2018.05.023
-