Occurrence State and Beneficiation Technology of Rubidium in a Low Grade Rubidium Ore in Qinghai Province
-
摘要:
这是一篇矿业工程领域的论文,介绍了青海某低品位铷矿石的工艺矿物学研究和选矿工艺研究结果。通过化学分析、镜下鉴定、MLA、电子探针分析等手段,查明了矿石中铷的赋存状态,确定了矿石主要有用元素为Rb,主要含铷矿物为云母、钾长石。在此基础上,对该矿石进行了破碎-粗粒云母筛分-磁-重-浮联合工艺选别,回收了矿石中的铌钽和铷,还通过实验证明了所得浮选云母精矿中的锂铷铯具良好可浸性,作业浸出率可达到82%以上。
Abstract:This is an essay in the field of mining engineering, which introduces the research results of process mineralogy and mineral processing technology of a low-grade rubidium ore from Qinghai Province. By means of chemical analysis, microscopic identification, MLA and electron probe microanalysis, the occurrence of rubidium in the ore is found out. The main useful element of the ore is Rb, and the main rubidium bearing minerals are mica and potash feldspar. On this basis, the combined process of crushing, coarse-grained mica screening, magnetic gravity gravity flotation was used to separate the ore, and Nb, Ta and Rb were recovered from the ore. The test results show that the lithium, rubidium and cesium in the flotation mica concentrate has good leachability, and the operation leaching rate can reach more than 82%.
-
-
表 1 矿石矿物成分组成/%
Table 1. Mineral composition of ores
钠长石 石英 钾长石 白云母 金云母 方解石 黄铁矿 锆石 磷灰石 钙铁榴石 金红石 高岭石 针铁矿 白云石 铌铁矿 21.51 52.35 8.97 11.75 4.04 0.13 0.07 0.01 0.27 0.10 0.02 0.66 0.09 0.02 0.01 表 2 矿石化学成分分析结果/%
Table 2. Analysis results of chemical composition in ores
Li2O Rb2O Cs2O Ta2O5* Nb2O5* Fe2O3 CaO MnO SiO2 0.068 0.080 0.0054 32.6 85.9 0.34 0.29 0.045 81.32 Al2O3 K2O Na2O MgO S P2O5 TiO2 Au* Ag* 9.97 2.74 2.65 0.48 0.0081 0.11 0.05 0.04 0.43 *单位为:g/t。 表 3 主要矿物嵌布粒度
Table 3. Distribution size of main minerals
粒度/μm 石英/% 钠长石/% 钾长石/% 白云母/% 金云母/% -300+150 34.45 29.72 27.92 18.92 7.04 -150+100 18.7 17.89 15.89 12.69 6.87 -100+75 16.55 15.99 17.51 13.24 10.41 -75+38 18.26 20.17 20.98 24.15 24.88 -38+20 5.12 5.96 7.17 11.18 17.25 -20+10 2.13 3.05 3.78 7.08 14.15 -10+5 0.85 1.58 2.13 3.57 8.32 -5 0.29 0.37 1.16 1.57 3.88 表 4 白云母电子探针分析结果/%
Table 4. Electron microprobe analysis of muscovite
组分 1 2 3 4 5 6 7 8 平均 Na2O 0.43 0.45 0.44 0.47 0.37 0.56 0.35 0.50 0.45 K2O 9.35 9.74 10.19 10.16 10.15 10.40 10.65 10.36 10.12 Rb2O 0.71 0.83 0.62 0.59 0.62 0.79 0.66 0.57 0.67 MgO 0 0.03 0 0.01 0 0.07 0.46 0.15 0.09 MnO 0.41 0.4 0.43 0.45 0.34 0.20 0.18 0.31 0.34 TiO2 0.06 0.05 0.06 0 0.04 0 0 0.03 0.03 SiO2 46.61 46.42 46.20 45.44 46.34 47.32 47.06 47.41 46.60 Al2O3 31.70 32.09 32.52 32.57 33.59 35.17 34.21 33.26 33.14 Fe2O3 1.25 1.29 1.24 1.29 1.18 0.83 0.89 1.20 1.15 Cs2O 0 0.06 0.04 0.02 0.02 0 0.06 0 0.03 Total 90.52 91.37 91.73 91.00 92.63 95.32 94.50 93.78 / 表 5 金云母电子探针分析结果/%
Table 5. Electron microprobe analysis of phlogopite
组分 1 2 3 4 5 平均 Na2O 0.11 0.20 0.13 0.12 0.13 0.14 K2O 9.73 8.68 9.28 9.28 9.36 9.27 Rb2O 0.40 0.22 0.26 0.27 0.19 0.27 MgO 23.56 21.84 23.46 22.97 22.97 22.96 MnO 0.14 0.10 0.12 0.15 0.11 0.12 TiO2 0 0 0.04 0 0.06 0.02 SiO2 42.51 41.40 41.78 41.89 41.70 41.86 Al2O3 16.34 18.04 16.51 16.85 16.82 16.91 Fe2O3 1.70 1.64 1.57 1.89 1.73 1.71 Cs2O 0.08 0.06 0.03 0.07 0.06 0.06 Total 94.55 92.16 93.17 93.49 93.14 表 6 云母单矿物化学分析结果/%
Table 6. Chemical analysis results of mica monomineral
Li2O Rb2O Cs2O Ta2O5* Nb2O5* 0.22 0.37 0.019 56.6 407 *单位为:g/t。 表 7 钾长石电子探针分析结果/%
Table 7. Electron microprobe analysis of potash feldspar
组分 1 2 3 4 平均 Na2O 0.62 1.15 0.37 0.62 0.69 K2O 15.56 14.71 16.01 15.25 15.38 Rb2O 0.16 0.18 0.17 0.16 0.17 MgO 0 0 0 0.01 0 MnO 0.02 0 0 0 0.01 TiO2 0 0.02 0 0.02 0.01 SiO2 65.34 65.5 65.46 64.65 65.24 Al2O3 17.98 18.33 18.04 17.95 18.08 Cs2O 0 0 0 0.01 0 Total 99.68 99.89 100.05 98.67 99.58 表 8 原矿石中铷金属量平衡计算
Table 8. Equilibrium calculation of rubidium metal content in raw ore
矿物 矿物
含量/%Rb2O
含量/%Rb2O
金属量/gRb2O
分布率/%云母 18.49 0.37 6.84 82.26 钾长石 8.68 0.17 1.48 17.74 钠长石 20.82 0 0.00 0.00 石英 50.67 0 0.00 0.00 其他 1.34 0 0.00 0.00 合计 100.00 0.083 8.32 100.00 表 9 闭路流程技术指标
Table 9. Technical index of closed circuit process
产品名称 产率/% Rb2O
含量/%Nb2O5含量/(g/t) Ta2O5含量/(g/t) Rb2O
回收率/%Nb2O5
回收率/%Ta2O5
回收率/%+2 mm
云母精矿3.21 0.37 407 56.60 14.68 12.92 6.41 铷精矿 14.58 0.33 334 81.10 59.41 48.13 41.70 钽铌粗精矿 3.70 0.037 577 236 1.68 21.10 30.73 尾矿 78.51 0.025 23.0 7.64 24.24 17.85 21.16 原矿 100.00 0.081 101.2 28.30 100.00 100.00 100.00 表 10 浸出探索实验结果
Table 10. Test results of leaching exploration
熟化温
度/℃浸渣产
率/%浸渣品位/% 作业浸出率/% Li2O Rb2O Cs2O Li2O Rb2O Cs2O 180 71.60 0.15 0.16 0.015 73.8 65.3 71.0 200 64.08 0.13 0.13 0.014 79.7 74.8 75.8 230 61.93 0.12 0.098 0.011 81.9 81.6 81.6 -
[1] 孙艳, 王瑞江, 亓锋, 等. 世界铷资源现状及我国铷开发利用建议[J]. 中国矿业, 2013, 22(9):11-13+57. SUN Y, WANG R J, QI F, et al. The current status of rubidium resources in the world and suggestions for the development and utilization of rubidium in China[J]. China Mining, 2013, 22(9):11-13+57. doi: 10.3969/j.issn.1004-4051.2013.09.003
SUN Y, WANG R J, QI F, et al. The current status of rubidium resources in the world and suggestions for the development and utilization of rubidium in China[J]. China Mining, 2013, 22(9): 11-13+57. doi: 10.3969/j.issn.1004-4051.2013.09.003
[2] 傅昕, 王玲. 硅酸盐矿石资源中铷的提取工艺综述[J]. 矿产综合利用, 2020(6):171-179. FU X, WANG L. Review of technology of rubidium extraction from silicate ore resources[J]. Multipurpose Utilization of Mineral Resources, 2020(6):171-179. doi: 10.3969/j.issn.1000-6532.2020.06.029
FU X, WANG L. Review of technology of rubidium extraction from silicate ore resources[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 171-179. doi: 10.3969/j.issn.1000-6532.2020.06.029
[3] 李善平, 湛守智, 金婷婷, 等. 青海沙柳泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析[J]. 稀土, 2016, 37(1):39-46. LI S P, ZHAN S Z, JIN T T, et al. Geochemical characteristics and provenance analysis of rare earth elements in pegmatites of Shaliuquan niobium-tantalum deposit in Qinghai[J]. Rare Earths, 2016, 37(1):39-46. doi: 10.16533/J.CNKI.15-1099/TF.201601007
LI S P, ZHAN S Z, JIN T T, et al. Geochemical characteristics and provenance analysis of rare earth elements in pegmatites of Shaliuquan niobium-tantalum deposit in Qinghai [J]. Rare Earths, 2016, 37(1): 39-46. doi: 10.16533/J.CNKI.15-1099/TF.201601007
[4] 吕晓强. 柴北缘生格地区花岗伟晶岩型铌钽矿成因及成矿潜力评价[R]. 西安: 长安大学, 2012.
LV X Q. Genesis and metallogenic potential evaluation of granite pegmatite-type niobium-tantalum deposit in Shengge area, northern Qaidam Basin[R]. Xi'an: Chang'an University, 2012.
[5] 张建平, 等. 青海省乌兰县夏日达乌铌稀有金属矿普查报告[R]. 西宁: 青海省核工业地质局, 2004.
ZHANG J P, et al. General survey report of Dawu niobium rare metal deposit in Xiaidawu, Wulan County, Qinghai Province [R]. Xining: Qinghai Provincial Nuclear Industry Geology Bureau, 2004.
[6] 徐新文. 青海省铌钽矿类型、特征及找矿方向[J]. 西部探矿工程, 2009(3):144-147. XU X W. Types, characteristics and prospecting directions of niobium-tantalum deposits in Qinghai Province[J]. Western Prospecting Engineering, 2009(3):144-147.
XU X W. Types, characteristics and prospecting directions of niobium-tantalum deposits in Qinghai Province[J] . Western Prospecting Engineering, 2009(3): 144-147.
[7] 赵玉卿, 王守敬, 田滔, 等. MLA在青海某石煤钒矿钒的赋存状态研究中的应用[J]. 矿产综合利用, 2020(1):89-93. ZHAO Y Q, WANG S J, TIAN T, et al. Application of MLA in the study of the occurrence of vanadium in a stone coal vanadium mine in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1):89-93. doi: 10.3969/j.issn.1000-6532.2020.01.018
ZHAO Y Q, WANG S J, TIAN T, et al. Application of MLA in the study of the occurrence of vanadium in a stone coal vanadium mine in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 89-93. doi: 10.3969/j.issn.1000-6532.2020.01.018
-