Flotation Technology Test of Refractory Copper Ore in Xinjiang
-
摘要:
这是一篇矿物加工工程领域的论文。新疆某铜矿石中矿物组成复杂、属于复杂难选氧化铜矿。矿石中硫化铜占总铜的35.67%,游离氧化铜和结合氧化铜占总铜的64.33%。脉石矿物种类多且与目标矿物之间嵌布关系复杂。采用先浮硫化铜矿物,再浮氧化铜矿物的原则流程进行了选矿工艺技术条件研究。针对该矿石性质,开展浮选条件实验,获得较佳工艺参数,磨矿细度-0.074 mm 65%,石灰用量为2500 g/t、捕收剂Z-200用量为100 g/t、硫化钠用量为1750 g/t、硫酸铵用量为550 g/t、戊基钠黄药用量为160 g/t。在较佳磨矿细度和药剂用量下,开展闭路浮选实验,闭路流程可以获得硫化铜精矿和氧化铜精矿两种产品,其混合铜精矿中Cu的品位为25.59%,Ag的品位为507.27 g/t,铜回收率为73.07%,银总回收率为70.27%。本研究为该氧化铜矿资源的高效利用提供了技术支撑。
Abstract:This is an essay in the field of mineral processing. Copper ore in Xinjiang was refractory oxidized copper ore,of which the mineral composition was complex. In the ore copper sulfide accounts for 35.97% of the total copper, free copper oxide and combined copper oxide account for 64.03%. There were many gangue minerals, the intercalation of useful minerals and gangue minerals was complex. The technical conditions of mineral processing were studied by the principle flow of flotation copper sulfide minerals and then copper oxide minerals. According to the properties of the ore, a flotation condition test was carried out to obtain the best process parameters. And the optimum process parameters that grinding fineness -0.074 mm accounted for 65%, the amount of lime was 2500 g/t, the amount of collector Z-200 was 100 g/t, the amount of sodium sulfide was 1750 g/t, the amount of ammonium sulfate was 550 g/t, the amount of sodium amyl xanthate was 160 g/t were obtained. When the grinding fineness was -74 μm 65% and the best pharmaceutical system was adopted, two kinds of copper sulfide concentrate and copper oxide concentrate can be obtained by closed circuit process. The Mixed copper concentrate with copper grade of 25.59%,silver grade of 507.27 g/t,and copper recovery ratio of 73.07%, silver recovery ratio of 70.27% was obtained. The efficient utilization of copper oxide resources was provided by this study.
-
Key words:
- Mineral processing /
- Copper oxide /
- Copper sulfide /
- Sulfur before oxygen /
- Sulfide flotation
-
-
表 1 原矿化学多元素分析结果/%
Table 1. Chemical multiple analysis results of raw ore
Cu Pb Zn S TFe SiO2 MgO Al2O3 P Mn CaO As Ag* Au* 1.57 0.016 0.025 0.71 6.51 46.97 7.26 12.29 0.161 0.146 6.12 0.17 28.12 <0.1 *单位为 g/t。 表 2 原矿主要矿物组成及相对含量
Table 2. Main mineral composition and relative content of raw ore
矿物名称 含量/% 矿物名称 含量/% 黄铁矿、磁黄铁矿 1.10 角闪石(少量长石、云母) 32.00 方铅矿、白铅矿 0.02 绿泥石 5.00 闪锌矿、菱锌矿 0.04 白云石、方解石 9.00 黄铜矿 0.01 石英 25.00 铜蓝 0.50 粘土矿物 6.30 孔雀石(含少量蓝铜矿) 0.89 硬锰矿、软锰矿、菱锰矿 2.00 磁铁矿、褐铁矿、赤铁矿 14.00 表 3 铜物相分析
Table 3. Analysis results of copper phase
名称 原生硫化铜 次生铜 氧化物 总铜 含 量/% 0.01 0.55 1.01 1.57 占有率/% 0.64 35.03 64.33 100.00 表 4 闭路实验结果
Table 4. Result of closed circuit of flotation
产品名称 产率/% 品位/% 回收率/% Cu Ag* Cu Ag 精矿Ⅰ 0.99 39.35 1338.07 25.51 42.05 精矿Ⅱ 3.37 21.55 263.77 47.56 28.22 混合精矿 4.36 25.59 507.68 73.07 70.27 尾矿 95.64 0.43 9.79 26.93 29.73 原矿 100.00 1.52 31.50 100.00 100.00 *单位为 g/t 表 5 尾矿再磨再浮实验结果
Table 5. Results of tailings regrinding and flotation test
-45 μm 含量/% 产品名称 产率/% Cu品位/% Cu作业回收率/% 75 精矿 3.46 0.68 5.87 尾矿 96.54 0.39 94.13 原矿 100.00 0.40 100.00 85 精矿 4.11 0.63 6.51 尾矿 95.89 0.39 93.49 原矿 100.00 0.40 100.00 95 精矿 3.97 0.64 6.37 尾矿 96.03 0.39 93.63 原矿 100.00 0.40 100.00 -
[1] 王凯, 崔毅琦, 童雄, 等. 难选氧化铜矿石的选矿方法及研究方向[J]. 金属矿山, 2012(8):80-83,117. WANG K, CUI Y Q, TONG X, et al. Beneficiation method and research direction of refractory oxidized copper ores[J]. Metal Mine, 2012(8):80-83,117.
WANG K, CUI Y Q, TONG X, et al. Beneficiation method and research direction of refractory oxidized copper ores[J]. Metal Mine, 2012(8): 80-83, 117.
[2] 杨国成, 于鸿宾, 郝福来, 等. 某难选氧化金铜矿石选矿试验研究[J]. 黄金, 2021, 42(12):53-58. YANG G C, YU H B, HAO F L, et al. Experimental study on the beneficiation of a refractory oxidized gold and copper ore[J]. Gold, 2021, 42(12):53-58.
YANG G C, YU H B, HAO F L, et al. Experimental study on the beneficiation of a refractory oxidized gold and copper ore[J]. Gold, 2021, 42(12): 53-58.
[3] 王美丽, 丰奇成, 王涵. 氧化铜矿选冶研究现状及展望[J]. 矿产综合利用, 2021(4):103-109+138. WANG M L, FENG Q C, WANG H. Current research situation and prospect in beneficiation-metallurgy of copper oxide ores[J]. Multipurpose Utilization of Mineral Resources, 2021(4):103-109+138.
WANG M L, FENG Q C, WANG H. Current research situation and prospect in beneficiation-metallurgy of copper oxide ores[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 103-109+138.
[4] 庞杰, 郑永兴, 戈保梁, 等. 难选氧化铜矿选冶联合技术研究现状与进展[J]. 矿产综合利用, 2019(5):1-5. PANG J, ZHENG Y X, GE B L, et al. Research status and development of the dressing-metallurgy combination processing of refractory copper oxides[J]. Multipurpose Utilization of Mineral Resources, 2019(5):1-5.
PANG J, ZHENG Y X, GE B L, et al. Research status and development of the dressing-metallurgy combination processing of refractory copper oxides[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 1-5.
[5] 李江丽, 刘殿文, 李佳磊, 等. 氧化铜矿物浮选的表面硫化研究进展[J]. 有色金属(选矿部分), 2020(5):122-129. LI J L, LIU D W, LI J L, et al. Research progress on surface sulfidization in flotation of oxidized copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2020(5):122-129.
LI J L, LIU D W, LI J L, et al. Research progress on surface sulfidization in flotation of oxidized copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2020(5): 122-129.
[6] 熊堃, 左可胜, 郑贵山. 新疆滴水氧化铜矿物的硫化浮选行为研究[J]. 矿产综合利用, 2020(5):71-76. XIONG K, ZUO K S, ZHENG G S. Study on sulphidization flotation characteristics of copper oxide minerals in Dishui, Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2020(5):71-76. doi: 10.3969/j.issn.1000-6532.2020.05.009
XIONG K, ZUO K S, ZHENG G S. Study on sulphidization flotation characteristics of copper oxide minerals in Dishui, Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 71-76. doi: 10.3969/j.issn.1000-6532.2020.05.009
[7] 杨虎, 陆宽伟, 张英. 低氧化率混合铜矿石浮选实验研究[J]. 化工矿物与加工, 2021, 50(8):4-8. YANG H, LU K W, ZHANG Y. Experimental study on flotation of copper ore mixture at low oxidation rate[J]. Industrial Minerals & Processing, 2021, 50(8):4-8.
YANG H, LU K W, ZHANG Y. Experimental study on flotation of copper ore mixture at low oxidation rate[J]. Industrial Minerals & Processing, 2021, 50(8): 4-8.
[8] 魏邦峰. 新疆某氧化铜矿浮选实验研究[J]. 新疆有色金属, 2014(5):67-69. WEI B F. Experimental study on flotation of an oxide copper ore in Xinjiang[J]. Xinjiang Youse Jinshu, 2014(5):67-69.
WEI B F. Experimental study on flotation of an oxide copper ore in Xinjiang[J]. Xinjiang Youse Jinshu, 2014(5): 67-69.
[9] 印万忠, 孙乾予, 李东, 等. 组合捕收剂硫化浮选氧化铜的机理和应用[J]. 中国有色金属学报(英文版), 2019, 29(1):178-185. YIN W Z, SUN Q Y, LI D, et al. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1):178-185. doi: 10.1016/S1003-6326(18)64926-X
YIN W Z, SUN Q Y, LI D, et al. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 178-185. doi: 10.1016/S1003-6326(18)64926-X
-