湖北某磷矿选矿实验研究

王建国, 周丽君, 李宏建. 湖北某磷矿选矿实验研究[J]. 矿产综合利用, 2023, 44(5): 160-165. doi: 10.3969/j.issn.1000-6532.2023.05.027
引用本文: 王建国, 周丽君, 李宏建. 湖北某磷矿选矿实验研究[J]. 矿产综合利用, 2023, 44(5): 160-165. doi: 10.3969/j.issn.1000-6532.2023.05.027
Wang Jianguo, Zhou Lijun, Li Hongjian. Research on Beneficiation of a Phosphate Ore in Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 160-165. doi: 10.3969/j.issn.1000-6532.2023.05.027
Citation: Wang Jianguo, Zhou Lijun, Li Hongjian. Research on Beneficiation of a Phosphate Ore in Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 160-165. doi: 10.3969/j.issn.1000-6532.2023.05.027

湖北某磷矿选矿实验研究

详细信息
    作者简介: 王建国(1982-),男,高级工程师,主要从事选矿工艺及药剂研究
  • 中图分类号: TD97

Research on Beneficiation of a Phosphate Ore in Hubei Province

  • 这是一篇矿物加工工程领域的论文。湖北某磷矿中的MgO和倍伴氧化物含量过高,对后续湿法磷酸工艺危害较大。针对该矿石特性,实验开发了“擦洗分级—光电选矿—正反浮选”联合工艺流程,常温条件下,闭路实验可以获得综合精矿P2O5品位33.52%、MgO含量0.82%、倍半氧化物(Fe2O3+Al2O3)含量2.84%、P2O5回收率95.69%的良好指标。同时擦洗分级和光电选矿能预先获得产率为72.88%的合格精矿,能够大幅度地减少进入磨浮作业的矿石量和细粒尾矿产生量,经济环境效益显著。

  • 加载中
  • 图 1  磷矿样品偏光显微镜照片

    Figure 1. 

    图 2  选矿实验流程

    Figure 2. 

    图 3  光电分选产品

    Figure 3. 

    图 4  磨矿细度与浮选指标关系曲线

    Figure 4. 

    图 5  碳酸钠用量实验结果

    Figure 5. 

    图 6  硅酸盐抑制剂对比实验结果

    Figure 6. 

    图 7  正浮选捕收剂用量实验结果

    Figure 7. 

    图 8  浮选矿浆质量浓度实验结果

    Figure 8. 

    图 9  反浮选捕收剂QS-29用量实验结果

    Figure 9. 

    表 1  原矿化学多元素分析结果/%

    Table 1.  Chemical multi-element analysis results of the raw ore

    P2O5MgOSiO2Fe2O3Al2O3CaOFK2ONaOI
    30.841.2412.451.153.1241.962.780.550.320.008
    下载: 导出CSV

    表 2  原矿石擦洗-分级实验结果

    Table 2.  Test results of scrubbing-grading of raw ore

    粒级/
    mm
    产率/
    %
    主要化学成分含量/%P2O5
    收率/%
    P2O5MgOAl2O3Fe2O3SiO2
    +608.3524.800.475.931.3223.196.72
    -60+408.2028.790.413.780.9717.627.65
    -40+2015.8531.261.362.190.9911.7016.07
    -20+1018.9532.640.912.321.329.7920.05
    -10+516.0632.181.072.450.9610.0416.76
    -5+28.3333.191.072.130.979.038.96
    -2+15.8532.551.112.101.038.816.17
    -1+0.453.6233.871.012.030.998.143.98
    -0.45+0.32.1635.390.811.640.846.812.47
    -0.30+0.154.2235.180.691.730.817.044.81
    -0.15+0.1061.3434.970.742.080.919.011.52
    -0.106+0.0751.0532.660.812.331.0610.081.11
    -0.075+0.0381.4929.681.253.201.4314.031.43
    -0.0384.5315.581.4711.231.5827.982.29
    合计100.0030.841.103.081.1012.41100.00
    下载: 导出CSV

    表 3  原矿擦洗-分级产品归类结果

    Table 3.  Product classification results of scrubbing-grading test of raw ore

    类别粒级/mm产率/%主要化学成分含量/%
    P2O5MgOAl2O3Fe2O3SiO2
    光电选原矿-60+1043.0031.400.982.551.1311.99
    筛分精矿-10+0.07442.6333.131.001.980.959.02
    筛分尾矿+608.3524.800.475.931.3223.19
    -0.0746.0119.061.359.251.5424.53
    合计100.0030.841.103.081.1012.41
    下载: 导出CSV

    表 4  -60+10 mm粒级矿石光电分选实验结果

    Table 4.  Test results of photoelectric separation of -60+10 mm size ore

    产品名称作业
    产率/%
    主要化学成分含量/%P2O5作业
    回收率/%
    P2O5MgOAl2O3Fe2O3SiO2
    精矿70.3633.700.811.961.008.6475.40
    尾矿29.6426.101.095.321.4118.4524.60
    合计100.0031.450.952.981.1211.55100.00
    下载: 导出CSV

    表 5  温度对浮选精矿影响实验结果

    Table 5.  Test results of temperature influence on flotation indexes

    温度/
    CB-102用量/
    (g/t)
    产率/
    %
    P2O5品位/
    %
    P2O5回收率/
    %
    15266787.1526.2494.31
    25166786.3626.1493.80
    35100087.6825.9894.49
    4566789.5225.8696.14
    下载: 导出CSV

    表 6  抑制剂条件实验结果

    Table 6.  Inhibitor condition test results

    抑制剂/
    (g/t)
    产品
    名称
    作业
    产率/%
    品位/%P2O5作业回
    收率/%
    P2O5MgOSiO2Fe2O3Al2O3
    硫酸
    8056
    精矿93.0631.470.496.830.851.3799.30
    尾矿6.942.9815.840.70
    合计100.0029.491.56100.00
    磷酸
    6111
    精矿93.0131.840.386.310.761.1999.33
    尾矿6.992.8516.860.67
    合计100.0029.811.53100.00
    磷酸
    1333
    硫酸
    6667
    精矿93.5031.190.536.580.921.3999.34
    尾矿6.503.0015.800.66
    合计100.0029.351.52100.00
    下载: 导出CSV

    表 7  全流程实验结果

    Table 7.  Results of full-process test

    产品名称产率/
    %
    品位/%P2O5
    收率/%
    P2O5MgOAl2O3Fe2O3SiO2
    光电选精矿30.2533.700.811.961.008.6433.04
    筛分精矿42.6333.131.001.980.959.0245.76
    浮选精矿15.2134.280.351.560.807.1516.89
    正浮选尾矿9.7512.850.324.06
    反浮选尾矿2.153.587.580.25
    合计100.0030.860.92100.00
    综合精矿88.0933.520.821.900.948.5795.69
    下载: 导出CSV
  • [1]

    张卫峰. 中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J]. 自然资源学报, 2005(3):378-386. ZHANG W F. Comparative analysis of the superiority of China’s phosphate rock and development strategies with that of the United states and Morocco[J]. Journal of Natural Resources, 2005(3):378-386.

    ZHANG W F. Comparative analysis of the superiority of China’s phosphate rock and development strategies with that of the United states and Morocco[J]. Journal of Natural Resources, 2005(3): 378-386.

    [2]

    蔡忠俊, 罗惠华, 吴洁, 等. 晋宁低品位胶磷矿剪切絮凝浮选[J]. 矿产综合利用, 2019(6):49-54. CAI Z J, LUO H H, WU J, et al. Shearing flocculation flotation of low-grade collophanite in Jinning[J]. Multipurpose Utilization of Mineral Resources, 2019(6):49-54.

    CAI Z J, LUO H H, WU J, et al. Shearing flocculation flotation of low-grade collophanite in Jinning[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 49-54.

    [3]

    余永富, 葛英勇, 潘昌林. 磷矿选矿进展及存在的问题[J]. 矿冶工程, 2008(1):29-33. YU Y F, GE Y Y, PAN C L. Progress and problem s in beneficiation of phosphorite ores[J]. Mining and Metallurgical Engineering, 2008(1):29-33.

    YU Y F, GE Y Y, PAN C L. Progress and problem s in beneficiation of phosphorite ores[J]. Mining and Metallurgical Engineering, 2008(1): 29-33.

    [4]

    王涛, 付磊, 李宁. 某硅钙质胶磷矿正反浮选试验研究[J]. 矿产综合利用, 2020(2):91-95. WANG T, FU L, LI N. Study on direct-reverse flotation of a silica calcinate phosphate ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):91-95.

    WANG T, FU L, LI N. Study on direct-reverse flotation of a silica calcinate phosphate ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 91-95.

    [5]

    曾理, 姜小明. Gemini表面活性剂体系下钙质磷矿中白云石的可浮性研究[J]. 矿产综合利用, 2020(1):83-88. ZENG L, JIANG X M. Study on the floatability of dolomite in calcareous phosphate rock under Gemini surfactant system[J]. Multipurpose Utilization of Mineral Resources, 2020(1):83-88.

    ZENG L, JIANG X M. Study on the floatability of dolomite in calcareous phosphate rock under Gemini surfactant system[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 83-88.

    [6]

    程亮, 马志军, 邵坤, 等. 辽宁某低品位磷矿选矿实验研究[J]. 矿产综合利用, 2021(1):99-103. CHENG L, MA Z J, SHAO K, et al. Experimental study on beneficiation of a low-grade phosphate ore in Beipiao, Liaoning Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1):99-103.

    CHENG L, MA Z J, et al. Experimental study on beneficiation of a low-grade phosphate ore in Beipiao, Liaoning Province [J]. Multipurpose Utilization of Mineral Resources, 2021(1): 99-103.

    [7]

    徐伟, 张仁忠, 田言, 等. 贵州某碳酸盐型磷矿反浮选脱镁提磷试验研究[J]. 化工矿物与加工, 2018, 47(4):1-3. XU W, ZHANG R Z, TIAN Y, et al. Experimental study on reverse flotation for removing magnesium and extracting phosphorus from a carbonate phosphate ore in Guizhou[J]. Industrial Minerals & Processing, 2018, 47(4):1-3.

    XU W, ZHANG R Z, TIAN Y, et al. Experimental study on reverse flotation for removing magnesium and extracting phosphorus from a carbonate phosphate ore in Guizhou[J]. Industrial Minerals & Processing, 2018, 47(4): 1-3.

    [8]

    吴中贤, 姜效军, 陶东平. 新型胶磷矿反浮选脱硅阳离子捕收剂试验研究[J]. 矿产综合利用, 2020(5):115-119. WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5):115-119.

    WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 115-119.

    [9]

    杜令攀, 陈赐云, 钟晋, 等. 浅析磷矿选矿技术进展与问题对策[J]. 化工矿物与加工, 2016, 45(1):57-61. DU L P, CHEN C Y, ZHONG J, et al. Brief analysis of phosphate beneficiation technology progress and problem countermeasures[J]. Industrial Minerals & Processing, 2016, 45(1):57-61.

    DU L P, CHEN C Y, ZHONG J, et al. Brief analysis of phosphate beneficiation technology progress and problem countermeasures[J]. Industrial Minerals & Processing, 2016, 45(1): 57-61.

    [10]

    郭文宾. 金属阳离子对磷矿反浮选及泡沫稳定性影响的研究[D]. 武汉: 武汉理工大学, 2017.

    GUO W B. Effect of Metal cation on reverse flotation and flotation foam of phosphate ore[D]. Wuhan: Wuhan University of Technology, 2017.

    [11]

    曾小波, 葛英勇. 胶磷矿阳离子反浮选泡沫行为调控研究[J]. 化工矿物与加工, 2008(1):1-3. ZENG X B, GE Y Y. Control of foam behavior in reverse flotation with Cationic collector for phosphate rock[J]. Industrial Minerals & Processing, 2008(1):1-3.

    ZENG X B, GE Y Y. Control of foam behavior in reverse flotation with Cationic collector for phosphate rock[J]. Industrial Minerals & Processing, 2008(1): 1-3.

    [12]

    朱一民, 陈通, 闫啸, 等. 新型磷灰石常温捕收剂的浮选试验研究[J]. 矿产综合利用, 2017(6):39-43. ZHU Y M, CHEN T, YAN X, et al. Collecting performance of new collectors on apatite at room temperature[J]. Multipurpose Utilization of Mineral Resources, 2017(6):39-43. doi: 10.3969/j.issn.1000-6532.2017.06.009

    ZHU Y M, CHEN T, YAN X, et al. Collecting performance of new collectors on apatite at room temperature[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 39-43. doi: 10.3969/j.issn.1000-6532.2017.06.009

  • 加载中

(9)

(7)

计量
  • 文章访问数:  1041
  • PDF下载数:  250
  • 施引文献:  0
出版历程
收稿日期:  2022-12-31
刊出日期:  2023-10-25

目录