锂云母矿硫酸盐焙烧-水浸提锂工艺及机理

康敏, 赵笑益, 曹欢, 梁效, 王勇, 郭彩莲. 锂云母矿硫酸盐焙烧-水浸提锂工艺及机理[J]. 矿产综合利用, 2023, 44(6): 146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022
引用本文: 康敏, 赵笑益, 曹欢, 梁效, 王勇, 郭彩莲. 锂云母矿硫酸盐焙烧-水浸提锂工艺及机理[J]. 矿产综合利用, 2023, 44(6): 146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022
Kang Min, Zhao Xiaoyi, Cao Huan, Liang Xiao, Wang Yong, Guo Cailian. Process and Mechanism of Sulfate Roasting-Water Extraction of Lithium from Lithium Mica Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022
Citation: Kang Min, Zhao Xiaoyi, Cao Huan, Liang Xiao, Wang Yong, Guo Cailian. Process and Mechanism of Sulfate Roasting-Water Extraction of Lithium from Lithium Mica Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022

锂云母矿硫酸盐焙烧-水浸提锂工艺及机理

详细信息
    作者简介: 康敏(1995-),女,研究生,工程师,主要研究方向为湿法冶金、资源综合利用
  • 中图分类号: TD985;TF826.3

Process and Mechanism of Sulfate Roasting-Water Extraction of Lithium from Lithium Mica Ore

  • 这是一篇冶金工程领域的文章。以江西某地锂云母矿为原料,通过对焙烧-浸出、拌酸熟化、直接酸浸出、碱压煮法等工艺进行探索实验,最终采用加硫酸盐焙烧-水浸法从锂云母矿中提锂。同时研究了焙烧温度、焙烧时间、添加剂种类、添加剂用量、浸出液固比、浸出温度等条件对锂浸出率影响,结果显示,焙烧温度对锂浸出率影响较大,在适当的焙烧温度范围内,锂的浸出效果较好。向锂云母矿中加入40%硫酸钾、20%硫酸钠、20%氧化钙,在900 ℃下焙烧1 h,焙砂按液固比1∶1在常温下浸出1 h,锂浸出率可达94.87%。这说明采用硫酸盐作添加剂来焙烧提锂效果较好,通过研究焙烧机理可知,加入硫酸盐经高温焙烧后,矿物结构被重构,矿中钠钾离子与锂云母中的锂离子置换,使其从难溶性铝硅酸盐矿物中分离,生成可溶性的硫酸锂,从而经水浸后进入溶液中。

  • 加载中
  • 图 1  锂云母矿的XRD

    Figure 1. 

    图 2  锂云母矿提锂实验流程

    Figure 2. 

    图 3  硫酸盐种类对浸出率影响

    Figure 3. 

    图 4  焙烧添加剂用量对浸出率影响

    Figure 4. 

    图 5  焙烧温度对浸出率影响

    Figure 5. 

    图 6  焙烧时间对浸出率影响

    Figure 6. 

    图 7  浸出温度对浸出率影响

    Figure 7. 

    图 8  浸出时间对浸出率影响

    Figure 8. 

    图 9  浸出液固比对浸出率影响

    Figure 9. 

    图 10  焙砂XRD分析

    Figure 10. 

    图 11  浸出渣XRD分析

    Figure 11. 

    表 1  锂云母矿的主要成分/%

    Table 1.  Main components of lithium mica

    Rb2OCs2OLi2OK2ONa2OAl2O3TFeCaOMgOSiO2P2O5F
    1.040.212.698.451.2122.400.640.100.02150.050.675.02
    下载: 导出CSV

    表 2  锂云母矿石矿物组成及含量

    Table 2.  Mineral composition and content of lithium mica ore

    矿物名称矿物含量/%矿物中Li含量/%配分率/%
    锂云母48.003.0398.60
    白云母25.500.081.39
    铯榴石0.041.070.01
    石英5.71//
    斜长石10.45//
    钾长石8.60//
    磷灰石0.06//
    黑云母0.07//
    高岭石1.40//
    绿泥石0.03//
    磁铁矿0.03//
    黄铁矿0.01//
    黄铜矿0.01//
    南平石0.03//
    三水铝石0.01//
    托帕石0.08//
    合计100.00100.00
    下载: 导出CSV

    表 3  焙烧-浸出实验结果

    Table 3.  Results of roasting-leaching experiments

    工艺产品质量/gLi2O含量/(g/t)Li2O浸出率/%
    碳酸盐焙烧-水浸焙砂144.417 470
    浸渣139.3517 3903.94
    硫酸盐焙烧-水浸焙砂173.2918 152
    浸渣108.741 22696.10
    氯化焙烧-水浸焙砂161.4813 024
    浸渣111.616 88563.46
    原矿100.0026 900
    下载: 导出CSV

    表 4  直接酸浸法实验结果

    Table 4.  Test results of direct acid leaching method

    工艺产品质量/gLi2O含量/(g/t)Li2O浸出率/%
    盐酸直接酸浸浸渣93.2526 3008.83
    原矿100.0026 900
    硫酸酸浸81.6612 45262.20
    硫酸酸浸+NaF86.4714 37153.80
    硫酸酸浸+CaF284.1913 50057.75
    下载: 导出CSV

    表 5  拌酸熟化-水浸结果

    Table 5.  Results of mixed acid ripening - water leaching

    酸用量产品质量/gLi2O含量/(g/t)Li2O浸出率/%
    原矿100.0026 900
    2.0:1浸渣68.015 68385.63
    1.5:1浸渣73.635 99483.59
    1.2:1浸渣78.256 38381.43
    1.0:1浸渣83.106 65579.44
    0.8:1浸渣88.176 90277.38
    下载: 导出CSV

    表 6  压煮法提锂结果

    Table 6.  Results of lithium extraction by pressure boiling method

    添加剂产品质量/gLi2O含量/
    (g/t)
    Li2O
    浸出率/%
    原矿100.0026 900
    焙砂96.6227 509
    90%Ca(OH)2+2%Na2CO3浸渣121.5810 35452.64
    10%CaO+20%NaCl浸渣111.6519 74617.05
    50%CaO+10%NaOH浸渣108.7318 97322.39
    下载: 导出CSV

    表 7  综合条件验证实验结果

    Table 7.  Results were verified by comprehensive conditions

    实验产品质量/g锂含量/ (g/t)锂浸出率/%
    1焙烧渣1 732.917 75294.85
    浸渣1 087.41 456
    2焙烧渣1 708.617 96594.83
    浸渣1 063.41 491
    3焙烧渣1 756.217 19894.93
    浸渣1104.31 391
    综合浸出率94.87
    下载: 导出CSV
  • [1]

    吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2019(1):1-6. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-6.

    WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.

    [2]

    李成秀, 程仁举, 刘星. 我国锂辉石选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8.

    LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 1-8.

    [3]

    Wei Xiang, Shengke Liang, Zhiyong Zhou, et al . Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J]. Hydrometallurgy, 2016, 166.

    [4]

    Xiang Zhong Kong, Hua Ye, Yu Qin. Factors of extracting lithium from lepidolite by sulfate roasting and dilute sulphuric acid leaching[J]. Applied Mechanics and Materials, 2014, 3013(522-524).

    [5]

    雷祖伟, 钟宏. 含铷、铯锂云母矿的复合盐焙烧-浸出性能及机理[J]. 矿产综合利用, 2019(3):152-158. LEI Z W, ZHONG H. Composite salt roasting-leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158.

    LEI Z W, ZHONG H. Composite salt roasting-leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 152-158.

    [6]

    徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37.

    XU Z Z, LIANG J L, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 32-37.

    [7]

    周贺鹏, 耿亮, 郭亮, 等. 江西宜春低品位锂云母矿综合回收工艺研究[J]. 非金属矿, 2020, 43(4):59-61+98. ZHOU H P, GENG L, GUO L, et al. Experimental study on comprehensive recovery of low-grade lepidolite in Yichun, Jiangxi Province[J]. Non-Metallic Mines, 2020, 43(4):59-61+98.

    ZHOU H P, GENG L, GUO L, et al. Experimental study on comprehensive recovery of low-grade lepidolite in Yichun, Jiangxi Province[J]. Non-Metallic Mines, 2020, 43(4): 59-61+98.

    [8]

    孙友润. 提高锂云母-石灰石烧结法Li2O回收率的途径[J]. 稀有金属与硬质合金, 2000, 143(4):23-27. SUN Y R. Approach to improve the recovery of Li2O by Li mica-limestone sintering process[J]. Rare Metals and Cemented Carbides, 2000, 143(4):23-27.

    SUN Y R. Approach to improve the recovery of Li2O by Li mica-limestone sintering process[J]. Rare Metals and Cemented Carbides, 2000, 143(4): 23-27.

    [9]

    柳林, 刘磊, 张亮, 等. 氯化焙烧—水浸从锂云母精矿中提锂实验[J]. 有色金属(冶炼部分), 2021(2):72-76. LIU L, LIU L, ZHANG L, et al. Research on recovery of lithium from lepidolite concentrate by chlorination roasting and water leaching[J]. Nonferrous Metals (Extractive Metallurgy), 2021(2):72-76.

    LIU L, LIU L, ZHANG L, et al . Research on recovery of lithium from lepidolite concentrate by chlorination roasting and water leaching[J]. Nonferrous Metals (Extractive Metallurgy), 2021(2): 72-76.

    [10]

    张秀峰, 伊跃军, 谭秀民, 等. 硫酸熟化锂云母提取锂铷铯的机理及动力学特征[J]. 中南大学学报(自然科学版), 2021, 52(9): 3093−3102.

    ZHANG X F, YI Y J, TAN X M, et al. Mechanism and kinetics characteristics of sulfuric acid baking process for extracting lithium, rubidium and cesium from lepidolite[J]. Journal of Central South University(Science and Technology)2021, 52(9): 3093−3102.

    [11]

    陈亚, 廖婷, 陈白珍, 等. 纯碱压煮法从锂辉石中提取锂的研究[J]. 有色金属(冶炼部分), 2011(9):21-23+32. CHEN Y, LIAO T, CHEN B Z, et al. Extraction of lithium from spodumene by sodium carbonate autoclave process[J]. Nonferrous Metals(Extractive Metallurgy), 2011(9):21-23+32.

    CHEN Y, LIAO T, CHEN B Z, et al . Extraction of lithium from spodumene by sodium carbonate autoclave process[J]. Nonferrous Metals(Extractive Metallurgy), 2011(9): 21-23+32.

    [12]

    韩晓, 方迪. 电感耦合等离子体原子发射光谱(ICP-AES)法测定岩矿中锂的含量[J]. 中国无机分析化学, 2021, 11(2):36-39. HAN X, FANG D. Determination of lithium in rock and ore by inductively coupled plasma atomic emission spectrometry (ICP-AES )[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2021, 11(2):36-39.

    HAN X, FANG D. Determination of lithium in rock and ore by inductively coupled plasma atomic emission spectrometry (ICP-AES )[J]. Chinese Jorunal of Inorganic Analytical Chemistry , 2021, 11(2): 36-39.

  • 加载中

(11)

(7)

计量
  • 文章访问数:  1139
  • PDF下载数:  1120
  • 施引文献:  0
出版历程
收稿日期:  2022-07-12
刊出日期:  2023-12-25

目录