Geochemical Characteristics and MetallogenicAge of the Maoping Graphite Deposit in the Panxi Area, Southern Sichuan
-
摘要:
这是一篇地球科学领域的论文。茅坪石墨矿是近年新发现的超大型晶质石墨矿床,位于上扬子古陆西缘的康滇断隆带中北段,成矿物质来源及其成矿时代研究较为薄弱。矿体赋存于中元古界天宝山组浅变质岩中,本文主要开展了矿石主量、微量及稀土元素地球化学特征研究。结果表明含矿岩层原岩为副变质岩,一套含碳质石英粉砂岩,沉积于缺氧环境。微量元素特征指示矿体原岩由近海陆源碎屑物沉积形成,矿石稀土含量(ΣREE)平均为158 g/t,δ Ce值平均为0.63,呈弱负异常,δ Eu值平均为0.69,呈负异常,具滨海潮坪相沉积特征。石墨矿体δ13C值为-28.35‰~-29.08‰,平均为-28.59‰,表明成矿碳质主要为有机碳。昔街角闪二长闪长岩锆石的LA-MC-ICP-MS 锆石U-Pb 年龄为(823.4±3.6) Ma,晚于天宝山组火山岩形成时代(954 Ma),代表了石墨矿受叠加变质时间。综上,该矿床成因类型为沉积-变质型,其变质作用可能包括晋宁期区域动力变质作用并叠加了接触变质。
Abstract:This is an article in the field of earth sciences. The newly discovered Maoping graphite deposit is a super-large crystalline graphite deposit that is located in the middle-northern section of the Kang-Dian fault-uplift belt on the western margin of the Upper Yangtze paleo-continent, and the research on the source of mineralization and its mineralization age is relatively weak. The orebodies occur in the epimetamorphic rocks of Mesoproterozoic Tianbaoshan Formation. In this paper, the geochemical characteristics of major ores, trace amounts and rare earth elements were mainly studied. The results show that the original rock of the ore-bearing rock layer is parametamorphic rock, a set of carbonaceous quartz-bearing siltstone, which is deposited in an oxygen-deficient environment. The characteristics of trace elements indicate that the original rock of the ore body is formed by the deposition of offshore terrigenous clasts. The ores show sedimentary characteristics of coastal tidal flat facies, with an average ΣREE of 158 g/t, average δ Ce value of 0.63 (weak negative anomaly), and an average δ Eu value of 0.69 (negative abnormaly). The graphite ore body has a δ13C value of -28.35‰~-29.08‰, with an average of -28.59‰, indicating that the mineralized carbon is dominated by organic carbon. The LA-MC-ICP-MS Zircon U-Pb of amphibole zircon from Xijie hornblende diorite Zircon is (823.4±3.6) Ma, which is later than the formation era of volcanic rocks of the Tianbaoshan Formation (954 Ma), representing the time of superposition metamorphism of graphite. In summary,the genetic type of the ore deposit is sedimentary- metamorphism and its metamorphism may include the regional dynamic metamorphism of Jinning period that is superimposed by contact metamorphism.
-
-
图 6 矿石K-A[17]
Figure 6.
图 7
$\left(\mathrm{Al}_2 \mathrm{O}_3+\mathrm{TiO}_2\right)-\left(\mathrm{SiO}_2+\mathrm{K}_2 \mathrm{O}\right)-\Sigma $ [19]Figure 7.
表 1 矿石与围岩主量元素组成/%
Table 1. Composition of major elements of the graphite ores and country rocks
岩性及样品
编号石墨矿石 围岩(绢云母千枚岩、片岩) MP-1 MP-2 MP-3 MP-4 MP-5 MP-6 MP-7 MP-9 MP-10 MP-11 MP-12 MP-13 MP-14 MP-15 MP-16 SiO2 77.8 80.4 79.3 89.1 85.3 82.1 88.4 88.5 76.9 66.4 64.4 67.7 64.1 66.8 67.2 Al2O3 7.15 6.94 9.46 1.54 3.93 5.94 4.99 4.36 8.42 16.8 17.90 17.4 17.0 16.9 16.5 Fe2O3 3.51 1.35 0.68 0.02 0.04 0.63 0.36 1.39 2.76 3.49 2.24 1.89 3.66 2.86 2.48 FeO 0.57 0.65 0.47 0.22 0.22 0.41 0.36 0.24 0.39 0.25 1.32 1.28 2.39 1.49 2.13 CaO 0.02 0.02 0.01 0.17 0.83 0.25 0.30 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 MgO 0.58 0.55 0.74 0.15 0.34 0.56 0.42 0.37 0.73 1.36 1.84 0.74 1.49 0.89 0.96 K2O 2.28 2.18 3.21 0.49 1.41 1.82 1.64 1.40 2.68 5.27 5.35 4.85 4.15 4.53 4.29 Na2O 0.08 0.08 0.06 0.05 0.05 0.07 0.07 0.05 0.12 0.17 0.14 0.27 0.22 0.27 0.25 TiO2 0.42 0.40 0.51 0.86 0.17 0.25 0.21 0.19 0.41 0.76 0.82 0.87 0.85 0.82 0.99 P2O5 0.33 0.14 0.07 0.22 0.62 0.28 0.65 0.07 0.32 0.18 0.07 0.05 0.06 0.09 0.06 MnO 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.17 0.10 0.13 0.06 0.06 灼失 6.72 6.39 3.96 5.46 5.85 6.07 1.75 1.90 6.25 3.90 4.22 3.65 4.26 3.66 3.66 total 99.5 99.1 98.5 98.3 98.7 98.4 99.1 98.5 99.0 98.6 98.5 98.8 98.3 98.4 98.6 SiO2/Al2O3 10.9 11.6 8.39 57.9 21.7 13.8 17.7 20.3 9.13 3.95 3.60 3.88 3.77 3.95 4.09 K2O/Na2O 27.1 28.3 54.4 10.2 27.6 28.0 24.1 31.1 22.3 31.0 38.2 18.0 18.9 16.8 17.2 MgO/CaO 30.5 36.7 74.0 0.88 0.41 2.24 1.40 37.0 73.0 64.8 102.2 74.0 149.0 89.0 48.0 DF3 -6.41 -6.32 -5.49 -8.07 -6.59 -6.47 -7.61 -8.20 -5.80 -2.93 -2.91 -2.49 -3.84 -3.01 -3.40 注:DF3=-0.21SiO2-0.32Fe2O3 (全铁)-0.98 MgO+0.55 CaO+1.46 Na2O+0.54 K2O+10.44[12] 表 2 石墨矿石与围岩微量及稀土元素组成/(g/t)
Table 2. Composition of trace elements and rare earth elements of the graphite ores and country rocks
岩性及样品
编号石墨矿石 围岩(绢云母千枚岩、片岩) MP-1 MP-2 MP-3 MP-4 MP-5 MP-6 MP-7 MP-9 MP-10 MP-11 MP-12 MP-13 MP-14 MP-15 MP-16 Rb 60.7 65.3 91.1 16.8 44.6 53.6 54.3 44.5 82.5 224 207 232 208 209 227 Sr 41 15.6 17.8 9.3 18 13.8 15.3 10.4 18.6 22.5 16.5 17.9 17.8 23.9 22 Ba 302 242 324 132 173 197 194 167 247 886 1080 661 580 607 500 Nb 7.06 6.56 8.95 1.25 3.64 5.2 4.06 4.15 7.84 13.1 14.3 17.2 18.8 16.4 28 Ta 0.53 0.47 0.76 0.071 0.29 0.41 0.34 0.25 0.6 1.13 1.27 1.48 1.22 1.14 1.7 Cs 1.79 1.68 2.2 0.48 1.07 1.64 1.29 1.11 2.67 5.82 7.17 6.47 8.71 5.8 7.19 U 30.7 7.93 9.95 2.8 5.82 9.87 7.49 2.61 10.9 3.19 2.88 2.46 2.33 2.2 2.14 Th 10.4 5.07 9.32 1.62 5.59 4.6 6.23 1.71 7.1 16.3 16.4 14.8 12.9 12.6 13 Co 13.5 2.09 1.52 1.47 1.09 1.21 1.05 3.5 2.05 3.56 21 11.9 26.8 10.5 15 Ni 36.1 19.4 4.13 1.73 2.00 7.72 1.85 3.18 11.1 9.12 75.8 17.6 40.1 20.7 22.1 Cr 92.8 70.5 108 24.4 68.6 101 74.4 49.9 104 75.8 81.2 101 94.5 87.9 93.6 V 1050 1000 2120 720 1190 726 1430 161 269 113 101 139 138 139 122 Cu 151 146 131 9.33 16.5 129 25.8 138 104 176 46.8 12.2 13.5 24.2 16.5 Pb 38.6 11.2 5.04 4.52 3.92 3.56 4.28 6.32 6.17 7.26 4.11 4.96 3.7 8.79 4.56 Zn 51.2 47.5 9.27 6.29 8.38 11.4 6.53 13.2 15.1 21.1 169 23 38.4 29.6 35.8 Mo 71.7 97.1 73.6 3.27 2.19 20.6 10.1 20.7 31.7 12.2 3.18 1.09 0.46 0.82 0.58 Ga 12.8 15.3 14.3 1.94 5.81 7.05 7.39 5.68 11.3 23.5 25.2 24.8 24.2 23.3 26.9 Se 5.53 3.02 128 0.47 0.34 5.06 3.97 5.2 4.25 20.2 0.26 0.046 0.046 0.15 0.05 Zr 130 129 219 27.4 69.5 101 80.9 61.9 108 181 182 192 200 189 311 Hf 3.36 3.22 4.72 0.57 1.66 2.46 1.9 1.53 2.65 4.54 4.8 4.01 4.36 4.02 6.46 Y 59.8 50.1 61.3 13.8 41.4 32.9 28.4 10.2 26.6 15.3 27.8 25.3 47.7 21.7 33.2 Rb/Sr 1.48 4.19 5.12 1.81 2.48 3.88 3.55 4.28 4.44 9.96 12.55 12.96 11.69 8.74 10.32 Sr/Ba 0.14 0.06 0.05 0.07 0.10 0.07 0.08 0.06 0.08 0.03 0.02 0.03 0.03 0.04 0.04 U/Th 2.95 1.56 1.07 1.73 1.04 2.15 1.20 1.53 1.54 0.20 0.18 0.17 0.18 0.17 0.16 Uau 27.2 6.24 6.84 2.26 3.96 8.34 5.41 2.04 8.53 -2.24 -2.59 -2.47 -1.97 -2.00 -2.19 Ni/Co 2.67 9.28 2.72 1.18 1.83 6.38 1.76 0.91 5.41 2.56 3.61 1.48 1.50 1.97 1.47 V/Cr 11.31 14.18 19.63 29.51 17.35 7.19 19.22 3.23 2.59 1.49 1.24 1.38 1.46 1.58 1.30 V/(Ni+V) 0.97 0.98 1.00 1.00 1.00 0.99 1.00 0.98 0.96 0.93 0.57 0.89 0.77 0.87 0.85 Zr/Y 2.17 2.57 3.57 1.99 1.68 3.07 2.85 6.07 4.06 11.83 6.55 7.59 4.19 8.71 9.37 Nb/Ta 13.3 14.0 11.8 17.6 12.6 12.7 11.9 16.6 13.1 11.6 11.3 11.6 15.4 14.4 16.5 La 59.6 109 45.1 2.65 16.2 17.6 31 19.1 27.6 40.3 41.8 29.1 21.1 41.0 47.4 Ce 69.5 140 60.8 3.88 22.5 23.5 38.9 29.8 58.7 71.8 64.6 46.8 15.6 29.2 53.8 Pr 17.2 31.1 13.5 0.95 4.7 5.19 8.53 4.44 7.4 9.15 10.3 4.95 4.86 5.95 9.91 Nd 72.5 128 57.6 4.58 21.2 21.7 36.3 18.2 30.1 34.1 38.3 16.4 20.1 18.4 34.4 Sm 13.2 21.2 11.5 1.26 5.16 5.2 7.02 3.23 6.68 6.66 7.49 2.89 4.72 3.47 6.93 Eu 2.26 3.04 2.19 0.36 1.33 1.22 1.41 0.74 1.43 1.33 1.72 0.71 1.07 0.80 1.33 Gd 10.3 13.8 9.72 1.52 5.69 5.2 5.44 2.56 6.17 5.56 6.57 2.9 5.17 3.02 6.4 Tb 1.44 1.56 1.45 0.27 0.89 0.84 0.75 0.3 0.88 0.68 1.00 0.49 0.92 0.52 1.05 Dy 8.64 7.86 8.81 1.85 5.91 5.18 4.32 1.59 5.03 3.28 5.79 3.36 6.19 3.34 6.12 Ho 1.86 1.63 1.98 0.42 1.25 1.14 0.92 0.35 0.97 0.61 1.10 0.74 1.27 0.7 1.09 Er 6.17 5.18 6.38 1.36 3.96 3.66 2.94 1.14 2.96 1.89 3.30 2.32 3.96 2.22 3.17 Tm 0.82 0.7 0.87 0.18 0.52 0.52 0.4 0.17 0.4 0.29 0.44 0.35 0.51 0.32 0.42 Yb 6.19 5.15 6.22 1.25 3.59 3.68 2.83 1.35 2.87 3.73 3.20 2.47 3.40 2.32 2.85 Lu 1.06 0.89 1.08 0.21 0.59 0.66 0.49 0.26 0.48 0.39 0.53 0.4 0.52 0.38 0.44 ΣREE 271 469 227 20.7 93.5 95.3 141 83.2 152 180 186 114 89.4 112 175 ΣLREE 234.3 432 191 13.7 71.1 74.4 123 75.5 132 163 164 101 67.5 98.8 154 ΣHREE 36.5 36.8 36.5 7.06 22.4 20.9 18.1 7.72 19.8 16.4 21.9 13.0 21.9 12.8 21.5 LREE/HREE 6.42 11.8 5.22 1.94 3.17 3.56 6.81 9.78 6.68 9.94 7.49 7.74 3.07 7.71 7.14 δ Eu 0.57 0.51 0.62 0.79 0.75 0.71 0.67 0.76 0.67 0.65 0.73 0.74 0.66 0.74 0.60 δ Ce 0.52 0.57 0.59 0.59 0.61 0.59 0.57 0.75 0.97 0.87 0.73 0.86 0.36 0.40 0.57 注:Uau=Uto一Th/3(Uto表示总U) 表 3 茅坪石墨矿床石墨碳同位素测试结果
Table 3. Carbon isotope test results of graphite in Maoping crystalline graphite deposit
序号 样品编号 样品岩性 δ13C/‰ 数据来源 1 MP-4 石墨片岩 -28.52 本文实测 2 MP-6 石墨片岩 -28.64 3 MP-7 石墨片岩 -28.37 4 MP-9 石墨片岩 -29.08 5 MP-10 石墨片岩 -28.35 表 4 茅坪石墨矿昔街岩体LA-MC-ICP-MS 锆石U-Th-Pb 同位素分析结果
Table 4. LA-MC-ICP-MS zircon U-Th-Pb dating results of Xijie rock in the Maoping graphite deposit
测点号 同位素含量/(g/t) 同位素比值 年龄(Ma) Pb Th U 232Th/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ PM14-1 1 50 111 310 0.48 0.0668 0.0010 1.2662 0.0207 0.1370 0.0012 833 168 831 9 827 7 2 77 197 475 0.59 0.0665 0.0008 1.2574 0.0199 0.1367 0.0017 822 29 827 9 826 9 3 96 276 565 0.70 0.0668 0.0008 1.2624 0.0183 0.1369 0.0016 831 23 829 8 827 9 4 46 127 295 0.57 0.0680 0.0011 1.2827 0.0273 0.1359 0.0015 878 34 838 12 822 9 5 114 294 686 0.62 0.0656 0.0007 1.2465 0.0193 0.1373 0.0016 794 24 822 9 829 9 6 33 83 198 0.59 0.0659 0.0010 1.2507 0.0230 0.1377 0.0019 1200 31 824 10 832 11 7 63 148 376 0.55 0.0675 0.0011 1.2662 0.0217 0.1359 0.0011 854 35 831 10 821 6 8 69 152 417 0.51 0.0663 0.0010 1.2551 0.0237 0.1369 0.0017 817 34 826 11 827 10 9 75 160 450 0.47 0.0651 0.0009 1.2426 0.0224 0.1381 0.0018 776 27 820 10 834 10 10 110 254 673 0.51 0.0650 0.0008 1.2277 0.0204 0.1364 0.0016 776 225 813 9 824 9 11 41 83 261 0.40 0.0695 0.0009 1.2825 0.0215 0.1332 0.0013 922 26 838 10 806 8 12 53 169 343 0.63 0.0702 0.0016 1.1792 0.0271 0.1214 0.0010 933 45 791 13 739 6 13 65 203 377 0.69 0.0658 0.0009 1.2465 0.0178 0.1368 0.0011 800 28 822 8 827 6 14 62 144 385 0.48 0.0669 0.0008 1.2696 0.0205 0.1371 0.0016 835 26 832 9 828 9 15 26 50 147 0.44 0.0722 0.0020 1.4383 0.0447 0.1432 0.0018 992 24 905 19 863 10 16 73 238 464 0.62 0.0658 0.0009 1.2519 0.0236 0.1373 0.0019 798 30 824 11 829 11 17 38 97 234 0.55 0.0666 0.0009 1.2658 0.0197 0.1373 0.0014 833 30 831 9 829 8 18 86 215 537 0.53 0.0665 0.0008 1.2419 0.0169 0.1348 0.0012 820 31 820 8 815 7 19 146 435 940 0.62 0.0659 0.0008 1.1541 0.0154 0.1260 0.0010 806 19 779 7 765 6 20 32 91 203 0.58 0.0667 0.0010 1.2535 0.0234 0.1357 0.0017 828 33 825 11 820 9 21 58 141 369 0.52 0.0669 0.0008 1.2537 0.0175 0.1350 0.0013 835 25 825 8 816 7 22 45 137 276 0.69 0.0656 0.0009 1.2383 0.0194 0.1362 0.0016 794 28 818 9 823 9 23 42 95 264 0.50 0.0664 0.0009 1.2482 0.0202 0.1356 0.0015 817 33 823 9 820 9 24 50 115 315 0.52 0.0665 0.0009 1.2559 0.0209 0.1363 0.0016 820 30 826 9 824 9 表 5 古水体氧化-还原环境微量元素判别指标[21]
Table 5. Determination index of trace elements in ancient water oxidation-reduction environment[21]
判别指标 缺氧还原
环境贫氧过度
环境富氧氧化
环境矿体 围岩 V/Cr >4.5 2.0-4.5 <2.0 14.4 1.41 V/(V+Ni) >0.84 0.6-0.84 <0.6 0.99 0.81 U/Th >1.25 0.75-1.25 <0.75 1.65 0.18 Uau >12 5-12 <5 7.33 -2.24 表 6 同类石墨矿床及相关地区13C组成对比
Table 6. Correlation of δ13C composition in the same type of graphite deposit and other areas
序号 样品岩性 δ13C/‰ 数据来源 1 石墨片岩 -28.35~-29.08 本文实测 2 石墨片岩 -24.5~-22.0 南江坪河石墨矿[28] 3 石墨片岩 -19.0~-21.4 旺苍大河坝石墨矿[29] 4 石墨片岩 -28.4~-28.0 攀枝花中坝石墨矿[3] 5 石墨大理岩 -27.64 6 石墨矿 -24.0~-21.2 山东南墅石墨矿[32] 7 大理岩 +0.8~+1.5 8 石墨矿 -16.8~-24.4 黑龙江柳毛石墨矿[31] 9 大理岩 -5.60~+3.00 10 煤、沥青 -21.7~-31.2 浙江安吉、开化、淳安[30] 11 原油 -24.0~-27.0 渤海、任丘、大港[30] 注:序号2-11为引用数据。 -
[1] 刘玉红, 周勇. 四川省会理县金雨石墨矿矿床地质特征及找矿标志[J]. 地质找矿论丛, 2018, 33(2):214-220.LIU Y H, ZHOU Y. Geological characteristics and prospecting marks of Jinyu graphite deposit in Huili county, Sichuan province[J]. Contributions to Geology and Mineral Resources Researc, 2018, 33(2):214-220.
LIU Y H, ZHOU Y . Geological characteristics and prospecting marks of Jinyu graphite deposit in Huili county, Sichuan province[J]. Contributions to Geology and Mineral Resources Researc,2018 ,33 (2 ):214 -220 .[2] 马源, 高瑞祥, 李金林, 等. 四川攀枝花晶质石墨矿地质特征及找矿标志[J]. 中国非金属矿工业导刊, 2019(S1):50-53+60.MA Y, GAO R X, LI J L, et al. Geological characteristics and prospecting signs of Panzhihua crystalline graphite deposit, Sichuan[J]. China Non-metallic Minerals Industry, 2019(S1):50-53+60.
MA Y, GAO R X, LI J L, et al . Geological characteristics and prospecting signs of Panzhihua crystalline graphite deposit, Sichuan[J]. China Non-metallic Minerals Industry,2019 (S1 ):50 -53+60 .[3] 夏锦胜, 孙莉, 肖克炎, 等. 2019. 四川省中坝晶质石墨矿床地球化学特征及成因分析. 现代地质, 33(6): 1286-1294.XIA J S, SUN L, XIAO K Y, et al . Geochemical features and genesis analysis of the Zhongba Scaly Graphite Deposit in Sichuan Province[J]. Geoscience, 2019, 33(6): 1286-1294.
XIA J S, SUN L, XIAO K Y, et al . Geochemical features and genesis analysis of the Zhongba Scaly Graphite Deposit in Sichuan Province[J]. Geoscience, 2019, 33(6): 1286-1294. [4] 白家全, 郭道军, 凌亚军, 等. 2021. 攀枝花石墨矿成矿地质规律及成矿模型初探[J]. 四川地质学报, 41(3): 398-405.BAI J Q, GUO D J, LING Y J, et al. A preliminary study of metallogenic regularities and metallogenic model of crystalline graphite deposits in Panzhihua[J]. Acta Geologica Sichuan, 2021, 41(3): 398-405.
BAI J Q, GUO D J, LING Y J, et al. A preliminary study of metallogenic regularities and metallogenic model of crystalline graphite deposits in Panzhihua[J]. Acta Geologica Sichuan, 2021, 41(3): 398-405. [5] 冯光兴, 姚建, 王凤岗, 等. 攀枝花大田石墨矿床地质特征及成因[J]. 矿物岩石, 2022, 42(3):48-57.FENG G X, YAO J, WANG F G, et al. Geological characteristics and genesis of the Datian Graphite Deposit in Panzhi-hua[J]. Mineralogy and Petrology, 2022, 42(3):48-57.
FENG G X, YAO J, WANG F G, et al . Geological characteristics and genesis of the Datian Graphite Deposit in Panzhi-hua[J]. Mineralogy and Petrology,2022 ,42 (3 ):48 -57 .[6] 张帅, 李亚, 牛艳萍, 等. 某片麻岩鳞片石墨矿浮选实验研究[J]. 矿产综合利用, 2022(2):111-115.ZHANG S, LI Y, NIU Y P, et al. Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):111-115.
ZHANG S, LI Y, NIU Y P, et al . Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources,2022 (2 ):111 -115 .[7] 李复汉, 覃嘉铭, 申玉连, 等. 康滇地区的前震旦系[M]. 重庆: 重庆出版社. 36-300, 1988.LI F H, QIN J M, SHEN Y L, et al. The pre-Sinian system of Kangdian region [M]. Chongqing: Chongqing Press: 36-300(in Chinese with English abstract), 1988.
LI F H, QIN J M, SHEN Y L, et al. The pre-Sinian system of Kangdian region [M]. Chongqing: Chongqing Press: 36-300(in Chinese with English abstract), 1988. [8] 耿元生, 杨崇辉, 王新社, 等. 扬子地台西缘变质基底演化[M]. 北京: 地质出版社: 1-215, 2008.GENG Y S, YANG C H, WANG X S, et al. 2008. Evolution of metamorphic basement on the western margin of the Yangtze platform [M]. Beijing: Geological Publishing House: 1-215(in Chinese with English abstract), 2008.
GENG Y S, YANG C H, WANG X S, et al. 2008. Evolution of metamorphic basement on the western margin of the Yangtze platform [M]. Beijing: Geological Publishing House: 1-215(in Chinese with English abstract), 2008. [9] 尹超. 扬子西缘会理群天宝山组火山岩地球化学及构造意义研究[D]. 北京: 中国地质大学(北京), 2015.YIN C. The Geochemistry and tectonic significance of the volcanic rocks in Tianbaoshan Formation of the Huili Group in the Western Yangtze Block[D]. Beijing: China University of Geosciences(Beijing)2015.
YIN C. The Geochemistry and tectonic significance of the volcanic rocks in Tianbaoshan Formation of the Huili Group in the Western Yangtze Block[D]. Beijing: China University of Geosciences(Beijing)2015. [10] 万平益, 王光洪, 周勇, 等. 四川省米易县茅坪石墨矿矿床地质特征及找矿标志探讨[J]. 中国锰业, 2020, 38(1):22-25.WAN P Y, WANG G H, ZHOU Y, et al. Chacteristics of Maoping graphitedeposit and discussion on the prospecting mark in Miyi County of Sichuan[J]. China Manganese Industry, 2020, 38(1):22-25.
WAN P Y, WANG G H, ZHOU Y, et al . Chacteristics of Maoping graphitedeposit and discussion on the prospecting mark in Miyi County of Sichuan[J]. China Manganese Industry,2020 ,38 (1 ):22 -25 .[11] 李飞, 高伦, 彭成龙, 等. 小鳞片膨胀石墨的制备及电化学性能[J]. 矿产综合利用, 2022(2):154-157.LI F, GAO L, PENG C L, et al. Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):154-157.
LI F, GAO L, PENG C L, et al . Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources,2022 (2 ):154 -157 .[12] Shaw D M. The origin of Apsley gneiss , Ontario[J]. Canadian Journal of Earth Sciences, 1972, 9: 18-35.
[13] Taylor H P, Sheppard S M F. Isotopic fractionation and isotope systematics[J]. Reviews in Mineralogy, 1986, 16(1):227-271.
[14] McDonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the Earth.[J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1001-1012. doi: 10.1016/0016-7037(92)90043-I
[15] Boynton W V. Geochemistry of the rare earth elements: meteorite studies [A]. //Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984, 63- 114.
[16] 杨培奇, 刘敬党, 张艳飞, 等. 黑龙江佳木斯地块典型石墨矿床含矿岩石地球化学特征及成矿时代[J]. 中国地质, 2017, 44(2):301-315.YANG P Q, LIU J Q, ZHANG Y F, et al. Ore geochemical characteristics and metallogenic epoch of typical graphite deposits in Jiamusi Massif, Heilongjiang Province[J]. Geology in China, 2017, 44(2):301-315(in Chinese with English abstract).
YANG P Q, LIU J Q, ZHANG Y F, et al . Ore geochemical characteristics and metallogenic epoch of typical graphite deposits in Jiamusi Massif, Heilongjiang Province[J]. Geology in China,2017 ,44 (2 ):301 -315 (in Chinese with English abstract).[17] 周世泰. 恢复变质岩原岩的一种岩石化学方法. 辽宁地质学报. 辽宁地质学报, 1981, 1(1): 178-188.ZHOU S T. A new petrochemical method in restoring the original of metamorphic rocks—KA diagram [J]. Land & Resources, 1981, 1(1): 178-188(in Chinese with English abstract).
ZHOU S T. A new petrochemical method in restoring the original of metamorphic rocks—KA diagram [J]. Land & Resources, 1981, 1(1): 178-188(in Chinese with English abstract). [18] 周世泰. 对17种恢复变质岩原岩的岩石化学方法的检验结果. 地质论评, 1984, 30(1): 81-84.ZHOU S T. Examination of 17 Petro chemical methods of restor in gprotoliths of metamorphic rocks[J]. Geological Review, 1984, 30(1): 81~84(in Chinese with English abstract).
ZHOU S T. Examination of 17 Petro chemical methods of restor in gprotoliths of metamorphic rocks[J]. Geological Review, 1984, 30(1): 81~84(in Chinese with English abstract). [19] Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustal rocks in Southwestern Finland[J]. Bull. Comm. géol. Finlande, 1953, 160(1):1-64.
[20] 严溶, 周汉文, 曾雯, 等. 湖北宜昌崆岭群孔兹岩系地球化学特征. 地质科技情报, 2006, 25(5): 41-46.YAN R, ZHOU H W, ZENG W, et al. Geochemical characteristics of khondalite series within Kongling Group in Yichang City, Hubei Province[J]. Geological Science and Technology Information, 2006, 25(5): 41-46(in Chinese with English abstract).
YAN R, ZHOU H W, ZENG W, et al. Geochemical characteristics of khondalite series within Kongling Group in Yichang City, Hubei Province[J]. Geological Science and Technology Information, 2006, 25(5): 41-46(in Chinese with English abstract). [21] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4):111-129.
[22] 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标. 矿物岩石地球化学通报, 2008, 27(1): 72-80.LIN Z J, CHEN D F, LIU Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80(in Chinese with English abstract).
LIN Z J, CHEN D F, LIU Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80(in Chinese with English abstract). [23] 郑永飞. 稳定同位素地球化学. 北京: 科学出版社: 6-7, 2000.ZHEN Y F. Stable Isotope Geochemistry[M]. Beijing: Science Press: 6-7(in Chinese with English abstract), 2000.
ZHEN Y F. Stable Isotope Geochemistry[M]. Beijing: Science Press: 6-7(in Chinese with English abstract), 2000. [24] 程林, 杨勇, 边敏, 等. 黄陵断穹核部鳞片石墨矿地球化学特征与成因研究. 地质与勘探, 2020, 56(4): 745-758.CHENG L, YANG Y, BIAN M, et al. Geochemical characteristics and genesis of flake graphite ores in the core of the Huangling Fault Dome, Hubei Province [J]. Geology and Exploration, 2020, 56(4): 745-758(in Chinese with English abstract).
CHENG L, YANG Y, BIAN M, et al. Geochemical characteristics and genesis of flake graphite ores in the core of the Huangling Fault Dome, Hubei Province [J]. Geology and Exploration, 2020, 56(4): 745-758(in Chinese with English abstract). [25] 朱建江, 刘福来, 刘福兴, 等. 胶-辽-吉造山带辽河群石墨矿碳同位素特征及成因分析[J]. 岩石学报, 2021, 37(2):599-618.ZHU J J, LIU F L, LIU F X, et al. Carbon isotope and genesis studies of graphite deposits in the Liaohe Group of the Jiao-Liao-Ji Orogenic Belt[J]. Acta Petrologica Sinica, 2021, 37(2):599-618 doi: 10.18654/1000-0569/2021.02.17
doi: 10.18654/1000-0569/2021.02.17ZHU J J, LIU F L, LIU F X, et al . Carbon isotope and genesis studies of graphite deposits in the Liaohe Group of the Jiao-Liao-Ji Orogenic Belt[J]. Acta Petrologica Sinica,2021 ,37 (2 ):599 -618 [26] Yang Q Y , Santosh M , Wada H . Graphite mineralization in Paleoproterozoic khondalites of the North China Craton: A carbon isotope study[J]. Precambrian Research, 2014, 255: 641-652.
[27] 孙新浩, 任云生, 孙珍军, 等. 新疆奇台县黄羊山石墨矿床特征、物质来源及成因[J]. 岩石学报, 2021, 37(6):1867-1882.SUN X H, REN Y S, SUN Z J, et al. Characteristics, ore sources and genesis of Huangyangshan graphite deposit in Qitai County, Xinjiang[J]. Acta Petrologica Sinica, 2021, 37(6):1867-1882. doi: 10.18654/1000-0569/2021.06.14
doi: 10.18654/1000-0569/2021.06.14SUN X H, REN Y S, SUN Z J, et al . Characteristics, ore sources and genesis of Huangyangshan graphite deposit in Qitai County, Xinjiang[J]. Acta Petrologica Sinica,2021 ,37 (6 ):1867 -1882 .[28] 马志鑫, 罗茂金, 刘喜停, 等. 四川南江坪河石墨矿碳质来源及成矿机制[J]. 地质科技情报, 2018, 37(3):134-139.MA Z X, LUO M J, LIU X T, et al. Carbon source and metallogenic mechanism of Pinghe graphite deposit at Nanjiang, Sichuan Province[J]. Geological Science and Technology Information, 2018, 37(3):134-139(in Chinese with English abstract).
MA Z X, LUO M J, LIU X T, et al . Carbon source and metallogenic mechanism of Pinghe graphite deposit at Nanjiang, Sichuan Province[J]. Geological Science and Technology Information,2018 ,37 (3 ):134 -139 (in Chinese with English abstract).[29] 段威, 唐文春, 黎龙昌, 等. 四川旺苍大河坝浅变质岩型石墨矿床地球化学特征与成因分析[J]. 现代地质, 2021, 35(3):599-607.DUAN W, TANG W C, LI L C, et al. Geochemical characteristics and genesis analysis of Daheba epimetamorphic graphite deposit in Wangcang, Sichuan Province[J]. Geoscience, 2021, 35(3):599-607(in Chinese with English abstract).
DUAN W, TANG W C, LI L C, et al . Geochemical characteristics and genesis analysis of Daheba epimetamorphic graphite deposit in Wangcang, Sichuan Province[J]. Geoscience,2021 ,35 (3 ):599 -607 (in Chinese with English abstract).[30] 刘敬党, 肖荣阁, 张艳飞, 等. 华北显晶质石墨矿床[M]. 北京: 科学出版社: 47-68, 2017.LIU J D, XIAO R G, ZHANG Y F, et al. Epicrystalline graphite deposit in North China[M]. Beijing: Science Press: 47-68, 2017.
LIU J D, XIAO R G, ZHANG Y F, et al. Epicrystalline graphite deposit in North China[M]. Beijing: Science Press: 47-68, 2017. [31] 李光辉, 黄永卫, 吴润堂, 等. 鸡西柳毛石墨矿碳质来源及铀、钒的富集机制[J]. 世界地质, 2008, 27(1):19-22.LI G H, HUANG Y W, WU R T, et al. Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. Global Geology, 2008, 27(1):19-22.
LI G H, HUANG Y W, WU R T, et al . Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. Global Geology,2008 ,27 (1 ):19 -22 .[32] 兰心俨. 山东南墅前寒武纪含石墨建造的特征及石墨矿床的成因研究[J]. 长春地质学院学报, 1981, 11(3):32-44.LAN X Y. The characteristics of graphite-bearing formation and study on the genesis of graphite deposit during Pre-Cambrian period[J]. Journal of Changchun Institute of Technology, 1981, 11(3):32-44.
LAN X Y . The characteristics of graphite-bearing formation and study on the genesis of graphite deposit during Pre-Cambrian period[J]. Journal of Changchun Institute of Technology,1981 ,11 (3 ):32 -44 .[33] 廖博文. 川西南部前寒武纪关键层位定年与新元古代构造古地理格局[D]. 北京: 中国地质大学(北京), 2019: 1-67.LIAO B W. SHRIMP Dating of the key horizons of the Precambrian and the Neoproterozoic Tectono-Palaeogeography of Southwest Sichuan, China[D]. Beijing: China University of Geosciences(Beijing), 2019: 1-67.
LIAO B W. SHRIMP Dating of the key horizons of the Precambrian and the Neoproterozoic Tectono-Palaeogeography of Southwest Sichuan, China[D]. Beijing: China University of Geosciences(Beijing), 2019: 1-67. [34] 牟传龙, 林仕良, 余谦. 四川会理天宝山组U-Pb年龄[J]. 地层学杂志, 2003(3):216-219.MOU C L, LIN S L, YU Q. The U-Pb Ages of the volcanic rock of the Tianbaoshan formation, Huili, Sichuan Province[J]. Journal of Stratigraphy, 2003(3):216-219.
MOU C L, LIN S L, YU Q . The U-Pb Ages of the volcanic rock of the Tianbaoshan formation, Huili, Sichuan Province[J]. Journal of Stratigraphy,2003 (3 ):216 -219 .[35] LI Z X, LI X H, ZHOU H W, et al. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30:163-166.
[36] 杨崇辉, 耿元生, 杜利林, 等. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义[J]. 中国地质, 2009, 36(3):647-657.YANG C H, GENG Y S, DU L L, et al. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications[J]. Geology in China, 2009, 36(3):647-657(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.03.011
doi: 10.3969/j.issn.1000-3657.2009.03.011YANG C H, GENG Y S, DU L L, et al . The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications[J]. Geology in China,2009 ,36 (3 ):647 -657 (in Chinese with English abstract).[37] 穆可斌, 连志义, 王学银. 甘肃阿尔金南缘白石头沟石墨矿地质特征、成矿条件及找矿标志[J]. 地质与勘探, 2019, 55(3):701-711.MU K B, LIAN Z Y, WANG X Y. Geological characteristics, metallogenic conditions and prospecting signs of the Baishitougou graphite deposit in the southern margin of the Altun, Gansu[J]. Geology and Exploration, 2019, 55(3):701-711(in Chinese with English abstract). doi: 10.12134/j.dzykt.2019.03.003
doi: 10.12134/j.dzykt.2019.03.003MU K B, LIAN Z Y, WANG X Y . Geological characteristics, metallogenic conditions and prospecting signs of the Baishitougou graphite deposit in the southern margin of the Altun, Gansu[J]. Geology and Exploration,2019 ,55 (3 ):701 -711 (in Chinese with English abstract). -