Discussion on Lithium Resources of High Temperature Geothermal Water in Southern Xizang and its Technical and Economic Efficiency of Extraction and Utilization
-
摘要:
这是一篇地球科学领域的论文。基于藏南高温地热水锂资源分布特征、成因机制、锂提取技术和经济性研究不足。本文通过板块构造分析、地热水组分测试、盐湖锂提取技术的适用性对比分析和建立地热水提取锂的经济评价模型,取得了如下成果:(1)藏南地热水锂主要分布在雅鲁藏布江深大断裂带两侧及其南部,富含锂花岗岩围岩淋滤和岩浆热液,为富锂地热水的形成提供了丰富的锂来源;(2)根据地热水锂具有低浓度和低镁/锂比的特性,选择了萃取法和沉淀法两种技术用来提取地热水锂元素;(3)以古堆地热田某地热井,其地热水锂浓度为23.5 mg/L,采用萃取法工艺提锂为例,建立经济评价模型,采用现金流量法对经济性进行评估,经济评估结果表明,当碳酸锂价格不低于25万元/t情况下,地热水提锂项目具有良好的经济效益。
Abstract:This is an article in the field of earth sciences. According to insufficient research on the distribution characteristics, genetic mechanism, lithium extraction technology, and economic benefits of high-temperature geothermal water lithium resources in Southern Xizang. Through the analysis of plate tectonics, the test of geothermal water components, the comparative analysis of the applicability of lithium extraction technology in salt lakes, and the establishment of an economic evaluation model for lithium extraction from geothermal water, the following achievements have been achieved: (1) The geothermal water lithium in Southern Xizang is mainly distributed on both sides of the Yarlung Zangbo River deep fault zone and its southern region, Lithium-rich granite wall rock leaching and magmatic hydrothermal solution, it provides rich lithium sources for the formation of lithium-rich geothermal water. (2) In accordance with the characteristics of low concentration and low magnesium/lithium ratio in geothermal water lithium, the extraction method and precipitation method are selected to extract and utilize lithium in geothermal water. (3) Take geothermal well in the Gudui geothermal field as an example, with a lithium concentration of 23.5 mg/L in geothermal water, and the extraction process is used to extract lithium, establishing an economic evaluation model, using cash flow method to evaluate the economy, and the economic evaluation results showed that when the price of lithium carbonate is not less than 250000 yuan/t, the extraction of lithium from geothermal water has good economic benefits.
-
-
表 1 藏南地热水物理化学组分分析结果/(mg/L)
Table 1. Analysis results of physical and chemical components of geothermal water in Southern Xizang
地热田 样品编号 pH值 TDS/(mg/L) Na+ K+ Mg2+ Ca2+ Cl- HCO3- SO42- CO32- Li+ 水化学类型 谢通门 G106 6.77 2929 680.00 70.78 11.95 107.68 797.00 774.10 165.43 0.00 23.84 Na-Cl-HCO3 G107 6.86 2614 584.88 68.08 9.78 120.16 660.25 755.53 144.92 0.00 20.74 Na-Cl-HCO3 G108 7.68 3241 719.08 70.27 16.28 164.18 873.81 867.54 189.60 0.00 23.67 Na-Cl-HCO3 定结 G110 7.68 419 120.29 6.36 1.50 19.26 47.97 287.31 25.60 0.00 0.35 Na-HCO3-Cl G111 7.86 653 181.17 9.55 2.27 25.01 56.77 345.22 88.05 0.00 0.59 Na-HCO3 萨迦 G121 8.24 2188 589.52 79.64 0.54 9.38 587.41 604.34 43.58 46.09 17.26 Na-Cl-HCO3 G122 9.17 2194 536.13 71.65 0.28 4.11 590.87 344.73 46.80 169.62 18.34 Na-Cl-CO3-HCO3 G125 8.58 2156 564.90 79.59 0.25 3.07 594.56 541.12 29.75 72.43 17.65 Na-Cl-HCO3 卡嘎 G127 9.37 336 97.73 1.54 0.10 1.71 26.36 88.34 64.35 19.18 0.22 Na-HCO3-SO4 G128 9.35 334 99.68 1.58 0.10 1.86 27.19 90.93 66.36 18.09 0.21 Na-HCO3-SO4 尼木 G201 8.7 608 142.93 7.73 0.21 10.57 88.57 72.39 123.80 10.73 1.45 Na-SO4-Cl G202 8.44 613 157.80 7.36 0.46 8.91 93.22 93.91 129.31 10.98 1.48 Na-SO4-Cl-HCO3 羊八井 G205 7.64 1385 391.16 42.73 0.10 2.41 339.44 413.42 53.96 0.00 9.07 Na-Cl-HCO3 G206 9.5 1295 329.76 21.08 0.41 2.76 145.47 242.16 202.91 86.50 8.51 Na-SO4-Cl-HCO3 羊易 G208 9.11 1454 360.45 33.44 0.10 3.79 152.29 389.91 203.32 53.55 13.31 Na-HCO3-Cl-SO4 G209 8.02 817 179.31 13.34 9.57 33.49 84.28 422.26 85.96 0.00 4.88 Na-HCO3-Cl 仁布 G221 6.79 3933 1181.66 104.42 10.68 89.40 1372.75 1131.79 58.84 0.00 24.34 Na-HCO3-Cl 宁中 G224 8.12 2010 569.09 89.07 7.11 27.18 460.56 756.32 219.08 0.00 8.48 Na-Cl-HCO3 G225 7.25 2028 570.74 89.46 7.14 32.01 459.45 772.14 221.38 0.00 8.39 Na-Cl-HCO3 古堆 G302 8.34 2875 673.25 67.06 0.24 4.59 591.50 460.24 142.23 53.20 23.50 Na-Cl-HCO3 G303 8.83 2828 648.05 73.19 0.49 4.22 574.94 373.27 131.38 114.52 24.40 Na-Cl-HCO3 G316 6.6 3053 680.65 93.40 13.88 133.12 862.38 834.95 132.96 0.00 31.53 Na-Cl-HCO3 日多 G323 7.02 1268 318.73 25.94 3.64 64.7 151.05 482.6 263.04 0.00 1.45 Na-HCO3-SO4-Cl G326 6.97 1299 316.24 25.86 3.65 64.96 153.01 483.01 265.87 0.00 1.40 Na-HCO3-SO4-Cl 注:数据来源于中国石化科研项目《地热水中稀碱金属富集机理及开发利用潜力探索研究》[3](2022)。 表 2 盐湖卤水锂提取技术比较
Table 2. Comparison of lithium extraction technologies from salt lake brine
提锂技术 沉淀法 萃取法 吸附法 电渗析膜法 纳滤膜法 技术
特点利用富锂老卤经脱硼、除钙、除镁等分离工序,再利用纯碱沉锂 利用有机溶剂先进行萃取得到萃合物,然后用盐酸反萃取 利用对Li有选择性吸附能力的吸附剂吸附Li,再将Li洗脱,使Li与杂子分离 外加直流电场驱动下,离子交换膜对卤水中离子具有选择性,从而实现镁锂分离 利用对Li有选择性吸附能力的吸附剂吸附Li,再将Li洗脱,使Li与杂子分离 工艺
优势工艺流程简单,技术成熟,生产成本低 适合锂浓度较低的卤水,易工业化 适合高镁锂比卤水,工艺简单、选择性好、回收率高、无污染 母液可循环利用 操作压力低,成本低;部分解决晒盐处理量、面积大、生产效率低等问题 工艺
劣势对卤水要求高,低镁
锂比原料消耗高、环境污染、设备腐蚀较大 工艺复杂,成本略高 工业化生产不稳定 工艺复杂 分离效率低,滤膜成本高,使用周期短 代表
盐湖智利阿塔卡玛盐湖 青海大柴旦盐湖 青海察尔汗盐湖 青海东台吉乃尔盐湖 青海西台吉乃尔盐湖 年产能 10.3万t 正进行千t级的中试试验 1万t 预计1万t 完成0.2万t中试试验,正建2万t 表 3 盐湖卤水与地热水中锂浓度、镁/锂比值对比[3,11]
Table 3. Comparison of lithium concentration and magnesium/lithium ratio between salt lake brine and geothermal water
地点 盐湖/
地热田TDS/
(g/L)Li/% Li/TDS Mg/Li 青藏 班戈湖 68.5 0.0104 0.104 0.64 扎仓茶卡 210 0.0426 0.002029 15.96 察尔汗盐湖 358 0.0124 0.000346 512.00 一里坪 327 0.0262 0.000801 51.00 西藏南部地热水 谢通门 2.929 0.002384 0.008139 0.5 措美-古堆 2.875 0.002394 0.008327 0.01 羊易 3.089 0.003451 0.011172 0.28 表 4 萃取法提取地热水锂元素成本估算
Table 4. Cost estimation of extracting Lithium from geothermal water by extraction method
建设投资
(万元)盐田建设 3380 厂房建设 1000 设备购置 萃取设备 112 反萃设备 112 洗涤及离心干燥设备 50 小计 1273 投资合计 4654 经营成本
(万元/年)材料成本 萃取剂 136 FeCl3 3 煤油 14 反萃剂 20 沉淀剂 51 小计 223 土地租金 63 动力成本 90 维修成本 53 人工成本 217 销售成本 154 管理成本 247 运营成本合计 1047 资源税
(万元/年)矿泉水资源税(3元/m³) 171 碳酸锂产量 (t/年) 71 表 5 不同碳酸锂价格下经济效益测算结果
Table 5. Calculation results of economic benefits under different lithium carbonate prices
财务指标 工业级碳酸锂价格(万元/t) 60 50 40 35 30 25 20 15 年均收入/万元 3786 3155 2524 2208 1893 1577 1262 946 税后投资回收期/年 2.34 2.96 4.04 4.94 6.40 9.10 17.11 亏损 税后财务内部收益率/% 122 76 45 33 22 13 2 投资收益率/% 47 35 24 18 13 7 1 资本金净利润率/% 35 27 18 14 9 5 1 -
[1] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8.
WU X S, WANG D H, YANG T T, et al . Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources,2022 (2 ):1 -8 .[2] 韩佳欢, 乜贞, 方朝合, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12):61-66.HAN J H, NIE Z, FANG C H, et al. Analysis of existing circumstance of supply and demand on China′s lithium resources[J]. Inoganic Chemicals Industry, 2021, 53(12):61-66.
HAN J H, NIE Z, FANG C H, et al . Analysis of existing circumstance of supply and demand on China′s lithium resources[J]. Inoganic Chemicals Industry,2021 ,53 (12 ):61 -66 .[3] 地热水中稀碱金属富集机理及开发利用潜力探索研究[R]. 北京: 中国石化集团新星石油公司, 2022.Study on the enrichment mechanism and exploitation potential of rare lkali metals in geothermal water[R]. Beijing: SINOPEC Star Petroleum Company, 2022.
Study on the enrichment mechanism and exploitation potential of rare lkali metals in geothermal water[R]. Beijing: SINOPEC Star Petroleum Company, 2022. [4] 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6):2905-2921.WANG Q, ZHAO Y J, LIU Y, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. Journal of Chemical Engineering, 2021, 72(6):2905-2921.
WANG Q, ZHAO Y J, LIU Y, et al . Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. Journal of Chemical Engineering,2021 ,72 (6 ):2905 -2921 .[5] 周总瑛, 罗璐. 西藏高温地热资源分布特征与发电建议[J]. 可持续能源, 2022, 12(1):1-8.ZHOU Z Y, LUO L. Distribution characteristics of high-temperature geothermal resources in Tibet and suggestions for power generation[J]. Sustainable Energy, 2022, 12(1):1-8. doi: 10.12677/SE.2022.121001
doi: 10.12677/SE.2022.121001ZHOU Z Y, LUO L . Distribution characteristics of high-temperature geothermal resources in Tibet and suggestions for power generation[J]. Sustainable Energy,2022 ,12 (1 ):1 -8 .[6] 曾令森, 高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 2017, 33(5):1420-1444.ZENG L S, GAO L E. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5):1420-1444
ZENG L S, GAO L E . Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica,2017 ,33 (5 ):1420 -1444 [7] WANG Chenguang, ZHENG Mianping, ZHANG Xuefei, et al. Geothermal-type lithium resources in Southern Xizang Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.
[8] 漆贵财. 锂离子筛复合材料的制备及性能研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2019.QI G C. Preparation and properties of Lithium ion sieve composites[D]. Xining: University of Chinese Academy of Sciences(Qinghai Salt Lake Research Institute, Chinese Academy of Sciences), 2019.
QI G C. Preparation and properties of Lithium ion sieve composites[D]. Xining: University of Chinese Academy of Sciences(Qinghai Salt Lake Research Institute, Chinese Academy of Sciences), 2019. [9] 王生彪, 王世蛟. 高镁锂比盐湖提锂工艺技术的研究[J]. 化工管理, 2020(28):147-148.WANG S B, WANG S J. Research on technology of extracting lithium from salt lake with high magnesium-lithium ratio[J]. Chemical Management, 2020(28):147-148.
WANG S B, WANG S J . Research on technology of extracting lithium from salt lake with high magnesium-lithium ratio[J]. Chemical Management,2020 (28 ):147 -148 .[10] 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2):481-503.JIANG C X, CHEN B L, ZHANG D Y, et al. Progress in isolating lithium resources from salt lake brine in China[J]. Journal of Chemical Engineering, 2022, 73(2):481-503.
JIANG C X, CHEN B L, ZHANG D Y, et al . Progress in isolating lithium resources from salt lake brine in China[J]. Journal of Chemical Engineering,2022 ,73 (2 ):481 -503 .[11] 李增荣, 刘国旺, 唐发满. 青海盐湖锂资源及提锂技术概述[J]. 资源信息与工程, 2017, 32(5):94-97.LI Z R, LIU G W, TANG F M. Summary of lithium resources and Lithium extraction technology in Qinghai salt lake[J]. Resource Information and Engineering, 2017, 32(5):94-97.
LI Z R, LIU G W, TANG F M . Summary of lithium resources and Lithium extraction technology in Qinghai salt lake[J]. Resource Information and Engineering,2017 ,32 (5 ):94 -97 .[12] 张梦龙, 田欢, 魏昊, 等. 锂资源提取工艺现状及发展趋势[J]. 稀有金属与硬质合金, 2018, 46(4):11-19.ZHANG M L, TIAN H, WEI H, et al. Current situation and development trend of Lithium resource extraction process[J]. Rare Metals and Cemented Carbides, 2018, 46(4):11-19.
ZHANG M L, TIAN H, WEI H, et al . Current situation and development trend of Lithium resource extraction process[J]. Rare Metals and Cemented Carbides,2018 ,46 (4 ):11 -19 . -