Effect of Inevitable Ions in Phosphate Reverse Flotation Return Water Systems on Flotation Behavior
-
摘要:
这是一篇矿业工程领域的论文。氟磷灰石及白云石在反浮选酸性介质中易溶解出Ca2+及Mg2+,并在回水循环过程中存在“累积效应”,对浮选指标造成不良影响。本实验以氟磷灰石、白云石及石英三种单矿物为研究对象,研究了不同循环次数的回水对三种单矿物浮选回收率的影响,研究表明,当pH值为5,循环次数达到3次后,白云石与氟磷灰石回收率差值由72.21 %降低为64.19 %,石英的回收率基本维持10%左右;而循环次数达到5次时,白云石与氟磷灰石回收率差值略微回升为69.74 %,石英的回收率略微降至11.22 %。本研究通过测定回水循环体系下离子溶出量、矿物表面的Zeta电位以及矿物表面的离子吸附量等分析手段,揭示了不同循环次数的回水中溶解离子对三种单矿物的作用机理。
Abstract:This is an article in the field of mining engineering. Ca2+ and Mg2+ are easily dissolved from fluorapatite and dolomite in the acid medium of reverse flotation, and there is a "cumulative effect" in the process of backwater circulation, which has an adverse effect on the flotation indexes. Taking fluorapatite, dolomite and quartz as the research objects, the effect of different recycle times of backwater on the flotation recovery of three single minerals was studied. The results showed that when pH value was 5, the recovery difference between dolomite and fluorapatite decreased from 72.21% to 64.19%, and the recovery of quartz maintained at about 10%; When the number of cycles reached 5, the recovery difference between dolomite and fluorapatite slightly increased to 69.74%, and the recovery of quartz slightly decreased to 11.22%. In this study, the mechanism of dissolved ions in backwater for three kinds of single minerals was revealed by measuring the number of dissolved ions, zeta potential of mineral surface and ions adsorption capacity of mineral surface under backwater circulation system.
-
Key words:
- Mining engineering /
- Fluorapatite /
- Reverse flotation /
- Backwater /
- Inevitable ion
-
-
[1] 王涛, 付磊, 李宁. 某硅钙质胶磷矿正反浮选试验研究[J]. 矿产综合利用, 2020(2):91-95.WANG T, FU L, LI N. Study on direct-reverse flotation of a silica calcinate phosphate ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):91-95. doi: 10.3969/j.issn.1000-6532.2020.02.016
doi: 10.3969/j.issn.1000-6532.2020.02.016WANG T, FU L, LI N . Study on direct-reverse flotation of a silica calcinate phosphate ore[J]. Multipurpose Utilization of Mineral Resources,2020 (2 ):91 -95 .[2] 李显波. 选矿回水中复杂离子对磷矿浮选的影响研究[D]. 贵阳: 贵州大学, 2015.LI X B. Research on the effect of complex ions in ore dressing return water on phosphorus ore flotation [D]. Guiyang: Guizhou University, 2015.
LI X B. Research on the effect of complex ions in ore dressing return water on phosphorus ore flotation [D]. Guiyang: Guizhou University, 2015. [3] 李冬莲, 秦芳, 张亚东. Ca2+、Mg2+、SO42-、PO43-对晋宁磷矿浮选的影响[J]. 非金属矿, 2013, 36(1):27-29+32.LI D L, QIN F, ZHANG Y D. The effect of Ca2+、Mg2+、SO42-、PO43- on Jinning phosphate rock flotation[J]. Non-Metallic Mines, 2013, 36(1):27-29+32. doi: 10.3969/j.issn.1000-8098.2013.01.011
doi: 10.3969/j.issn.1000-8098.2013.01.011LI D L, QIN F, ZHANG Y D . The effect of Ca2+、Mg2+、SO42-、PO43- on Jinning phosphate rock flotation[J]. Non-Metallic Mines,2013 ,36 (1 ):27 -29+32 .[4] 黄小芬, 张覃. 钙镁离子对胶磷矿表面电性及可浮性的影响[J]. 矿物学 报, 2013, 33(2):185-188.HUANG X F, ZHANG Q. A study on the influence of Ca2+ and Mg2+ on collophanite surface electrical properties and flotability[J]. Acta Mineralogica Sinica, 2013, 33(2):185-188.
HUANG X F, ZHANG Q . A study on the influence of Ca2+ and Mg2+ on collophanite surface electrical properties and flotability[J]. Acta Mineralogica Sinica,2013 ,33 (2 ):185 -188 .[5] 吴中贤, 姜效军, 陶东平. 新型胶磷矿反浮选脱硅阳离子捕收剂试验研究[J]. 矿产综合利用, 2020(5):115-119.WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5):115-119. doi: 10.3969/j.issn.1000-6532.2020.05.017
doi: 10.3969/j.issn.1000-6532.2020.05.017WU Z X, JIANG X J, TAO D P . Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources,2020 (5 ):115 -119 .[6] 耿超, 程伟, 刘志红. 回水中无机离子对硅钙质磷矿石正反浮选的影响[J]. 矿冶工程, 2020, 40(4):38-41.GENG C, CHENG W, LIU Z H. Influence of inorganic ions in return water on direct and reverse flotation of silicon calcium collophanite[J]. Mining and Metallurgical Engineering, 2020, 40(4):38-41. doi: 10.3969/j.issn.0253-6099.2020.04.009
doi: 10.3969/j.issn.0253-6099.2020.04.009GENG C, CHENG W, LIU Z H . Influence of inorganic ions in return water on direct and reverse flotation of silicon calcium collophanite[J]. Mining and Metallurgical Engineering,2020 ,40 (4 ):38 -41 .[7] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科技出版社, 1988.WANG D Z, HU Y H. Chemistry of flotation solutions [M]. Changsha: Hunan Science and Technology Press, 1988.
WANG D Z, HU Y H. Chemistry of flotation solutions [M]. Changsha: Hunan Science and Technology Press, 1988. [8] Chen G L, Daniel Tao. Effect of solution chemistry on flotability of magnesite and dolomite[J]. International Journal of Mineral Processing, 2004, 74(1):343-357.
[9] YANG B Q, WANG D R, WANG T S, et al. Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation[J]. Minerals Engineering, 2019, 130:101-109 doi: 10.1016/j.mineng.2018.10.012
[10] 李绪, 朱干宇, 宫小康, 等. 胶磷矿中杂质赋存形式及酸解过程变化[J]. 光谱学与光谱分析, 2019, 39(4):1288-1293.LI X, ZHU G Y, GONG X K, et al. Occurrence of the impurities in phosphorus rock and the research of acidolysis process[J]. Spectroscopy and Spectral Analysis, 2019, 39(4):1288-1293.
LI X, ZHU G Y, GONG X K, et al . Occurrence of the impurities in phosphorus rock and the research of acidolysis process[J]. Spectroscopy and Spectral Analysis,2019 ,39 (4 ):1288 -1293 . -