Z-200体系下Pb2+,Zn2+对黄铜矿可浮性的影响及其机理

鱼博, 何廷树, 王鑫, 贺寒冰, 王宇斌. Z-200体系下Pb2+,Zn2+对黄铜矿可浮性的影响及其机理[J]. 矿产综合利用, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020
引用本文: 鱼博, 何廷树, 王鑫, 贺寒冰, 王宇斌. Z-200体系下Pb2+,Zn2+对黄铜矿可浮性的影响及其机理[J]. 矿产综合利用, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020
YU Bo, HE Tingshu, WANG Xin, HE Hanbing, WANG Yubin. Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020
Citation: YU Bo, HE Tingshu, WANG Xin, HE Hanbing, WANG Yubin. Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020

Z-200体系下Pb2+,Zn2+对黄铜矿可浮性的影响及其机理

  • 基金项目: 陕西省科技厅重点研发项目(2018GY-088)
详细信息
    作者简介: 鱼博(1996-),男,硕士研究生,主要从事矿物综合利用研究
    通讯作者: 王宇斌(1972-),男,博士,副教授,主要从事矿物综合利用研究
  • 中图分类号: TD912

Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism

More Information
  • 这是一篇矿物加工工程领域的论文。黄铜矿、方铅矿和闪锌矿通常会相互伴(共)生,为了探究Pb2+和Zn2+对黄铜矿浮选行为和表面性质的影响,本研究对黄铜矿进行了单矿物浮选实验,并利用溶液化学计算、Zeta电位和XPS检测等方法,对比研究了Pb2+和Zn2+对黄铜矿浮选行为和表面性质的影响。黄铜上的 Zn2+。矿石可浮性影响的差异。测试结果表明,Pb2+和Zn2+都会吸附在黄铜矿表面,改变黄铜矿表面的Zeta电位,抑制黄铜矿的可浮性,并且随着pH值的升高,抑制作用增强;结合浮选实验结果可知,浮选所处的矿浆pH值范围内,锌主要以Zn(OH)2沉淀的形式吸附在黄铜矿表面从而对黄铜矿的浮选产生抑制效果,所以Zn2+对黄铜矿浮选的抑制效果要比Pb2+显著;且XPS分析结果表明,Pb2+和Zn2+都能在黄铜矿表面形成沉淀物,并以化学吸附的形式出现在黄铜矿表面,从而抑制黄铜矿的可浮性。

  • 加载中
  • 图 1  单矿物浮选流程

    Figure 1. 

    图 2  pH 值对黄铜矿浮选效果的影响

    Figure 2. 

    图 3  Pb2+, Zn2+浓度对黄铜矿浮选效果的影响

    Figure 3. 

    图 4  Pb2+溶液各组分lgC-pH

    Figure 4. 

    图 5  Zn2+溶液各组分lgC-pH

    Figure 5. 

    图 6  不同条件下黄铜矿表面 Zeta 电位

    Figure 6. 

    图 7  黄铜矿的XPS

    Figure 7. 

    图 8  CuFeS2的高分辨扫描XPS及分峰拟合

    Figure 8. 

    表 1  黄铜矿表面原子相对百分含量及元素电子结合能

    Table 1.  Relative content and electron binding energy of atoms on chalcopyrite surface

    序号 浓度/ (mg/L)
    相对含量/% 电子结合能/eV
    Pb2+ Zn2+ Cu O S C Pb Zn Cu S Pb Zn
    1 0 0 2.03 16.95 7.74 71.52 - - 932.49 162.35 - -
    2 50 0 1.65 23.34 7.79 66.42 0.80 - 932.62 162.01 138.77 -
    3 0 50 0.72 30.66 0.48 65.37 - 1.67 932.53 163.18 - 1022.09
    下载: 导出CSV

    表 2  Cu的价键形态及分峰拟合分布比例

    Table 2.  Distribution ratio of each sub-peak fitting form of Cu

    序号浓度/ (mg/L)
    结合能/eV相对含量/%
    Pb2+Zn2+CuFeS2CuSCu(Ⅱ)CuFeS2CuSCu(Ⅱ)
    100932.98932.26935.8937.5554.168.29
    2500932.13933.33936.6720.8369.349.83
    3050931.85932.84933.9662.6822.3814.94
    下载: 导出CSV
  • [1]

    王威, 李以科, 封宁. 全球铜矿资源格局分析[J]. 资源与产业, 2013, 15(5):27-32.WANG W, LI Y K, FENG N. Global cooper resource pettern[J]. Resources and Industry, 2013, 15(5):27-32.

    WANG W, LI Y K, FENG N. Global cooper resource pettern[J]. Resources and Industry, 2013, 15(5):27-32.

    [2]

    张汉彪, 薛伟. 刚果(金)某复杂难选氧化铜矿选矿试验研究[J]. 矿产综合利用, 2020(3):117-120.ZHANG H B, XUE W. Experimental study on beneficiation of a complex refractory copper oxide ore in Congo (DRC)[J]. Multipurpose Utilization of Mineral Resources, 2020(3):117-120.

    ZHANG H B, XUE W. Experimental study on beneficiation of a complex refractory copper oxide ore in Congo (DRC)[J]. Multipurpose Utilization of Mineral Resources, 2020(3):117-120.

    [3]

    黄真瑞, 钟宏, 王帅, 等. 黄铜矿浮选工艺及捕收剂研究进展[J]. 应用化工, 2013, 42(11): 2048-2051+2055.HUANG Z R, ZHONG H, WANG S , et al. Progress of flotation technology and collectors for chalcopyrite [J]. Applied Chemical Industry, 2013, 42 (11): 2048-2051 + 2055.

    HUANG Z R, ZHONG H, WANG S , et al. Progress of flotation technology and collectors for chalcopyrite [J]. Applied Chemical Industry, 2013, 42 (11): 2048-2051 + 2055.

    [4]

    肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    [5]

    王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12):84-88.WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valences on chalcopyrite flotation[J]. Metal Mineses, 2018(12):84-88. doi: 10.19614/j.cnki.jsks.201812015

    WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valences on chalcopyrite flotation[J]. Metal Mineses, 2018(12):84-88. doi: 10.19614/j.cnki.jsks.201812015

    [6]

    雷大士, 王宇斌, 郭月琴, 等. 陕西某含铋白钨矿选矿试验研究[J]. 中国钨业, 2017, 32(3):31-35.LEI D S, WANG Y B, GUO Y Q, et al. Beneficiation of a bismuth-containing scheelite in Shaanxi[J]. China Tungsten Industry, 2017, 32(3):31-35.

    LEI D S, WANG Y B, GUO Y Q, et al. Beneficiation of a bismuth-containing scheelite in Shaanxi[J]. China Tungsten Industry, 2017, 32(3):31-35.

    [7]

    温 凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    [8]

    鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿工艺矿物学研究[J]. 中国钼业, 2021, 45(1):34-38.YU B, WANG Y B, WANG Y, et al. Research on process mineralogy of a copper-lead-zinc polymetallic sulphide ore[J]. China Molybdenum Industry, 2021, 45(1):34-38.

    YU B, WANG Y B, WANG Y, et al. Research on process mineralogy of a copper-lead-zinc polymetallic sulphide ore[J]. China Molybdenum Industry, 2021, 45(1):34-38.

    [9]

    魏明安, 孙传尧. 矿浆中的难免离子对黄铜矿和黄铜矿浮选的影响[J]. 有色金属, 2008(2):92-95.WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Nonferrous Metals(Mineral Processing Section), 2008(2):92-95.

    WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Nonferrous Metals(Mineral Processing Section), 2008(2):92-95.

    [10]

    施帅, 何廷树, 李慧. Ca2+和Mg2+对辉钼矿可浮性的影响对比[J]. 过程工程学报, 2021, 21(2):153-159.SHI S, HE T S, LI H. Comparison of the effects of Ca2+and Mg2+ on the floatability of molybdenite[J]. Journal of Process Engineering, 2021, 21(2):153-159.

    SHI S, HE T S, LI H. Comparison of the effects of Ca2+and Mg2+ on the floatability of molybdenite[J]. Journal of Process Engineering, 2021, 21(2):153-159.

    [11]

    刘微, 刘广义, 肖静晶, 等. N-异丁氧羰基硫脲浮选黄铜矿的机理[J]. 中国有色金属学报, 2017, 27(1):128-137.LIU W, LIU G Y, XIAO J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):128-137.

    LIU W, LIU G Y, XIAO J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):128-137.

    [12]

    马鑫, 王帅, 钟宏. 苄基三硫代碳酸钠的合成及其对黄铜矿的浮选性能[J]. 中国有色金属学报, 2018, 28(5):1067-1075.MA X, WANG S, ZHONG H. Sodium benzyl trithiocarbonate synthesis and flotation performance to chalcopyrite[J]. Chinese Journal of Nonferrous metals, 2018, 28(5):1067-1075. doi: 10.19476/j.ysxb.1004.0609.2018.05.24

    MA X, WANG S, ZHONG H. Sodium benzyl trithiocarbonate synthesis and flotation performance to chalcopyrite[J]. Chinese Journal of Nonferrous metals, 2018, 28(5):1067-1075. doi: 10.19476/j.ysxb.1004.0609.2018.05.24

  • 加载中

(8)

(2)

计量
  • 文章访问数:  647
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2021-05-10
刊出日期:  2024-02-25

目录