高岭土对含有Cu2+和Pb2+污水吸附性实验

李松良, 刘荣荣, 张伟东. 高岭土对含有Cu2+和Pb2+污水吸附性实验[J]. 矿产综合利用, 2024, 45(1): 187-193. doi: 10.3969/j.issn.1000-6532.2024.01.025
引用本文: 李松良, 刘荣荣, 张伟东. 高岭土对含有Cu2+和Pb2+污水吸附性实验[J]. 矿产综合利用, 2024, 45(1): 187-193. doi: 10.3969/j.issn.1000-6532.2024.01.025
LI Songliang, LIU Rongrong, ZHANG Weidong. Experimental on the Adsorption of Kaolin to Wastewater Containing Cu2+ and Pb2+[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 187-193. doi: 10.3969/j.issn.1000-6532.2024.01.025
Citation: LI Songliang, LIU Rongrong, ZHANG Weidong. Experimental on the Adsorption of Kaolin to Wastewater Containing Cu2+ and Pb2+[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 187-193. doi: 10.3969/j.issn.1000-6532.2024.01.025

高岭土对含有Cu2+和Pb2+污水吸附性实验

  • 基金项目: 江苏省第六期“333”工程第三层次资助项目;扬州科技局市校合作专项资助项目(YZ2021170);扬州市职业大学科研创新团队建设资助项目(KYCXTD201906);国家自然科学基金(NO. 51709254)
详细信息
    作者简介: 李松良(1980-),男,硕士研究生,讲师,研究方向为污水处理及海绵城市雨水利用
  • 中图分类号: TD985

Experimental on the Adsorption of Kaolin to Wastewater Containing Cu2+ and Pb2+

  • 这是一篇环境工程领域的论文。为了研究高岭土对含有Cu2+和Pb2+污水吸附性能的影响,开展了不同初始浓度、温度、吸附时间、高岭土掺量和pH值作用下高岭土吸附重金属离子实验,并分析了高岭土对Cu2+和Pb2+共同吸附实验结果。结果表明:高岭土吸附金属Pb2+离子的效果要好于高岭土吸附金属Cu2+离子的效果。结合实验结果和经济效益而言,在初始浓度为200 mg/L,pH值为6、温度为30 ℃,高岭土掺量为1.5 g,吸附时间为2.0 h时,高岭土对金属Pb2+和Cu2+离子的吸附效果较优,其中金属Pb2+离子的吸附量分别达到了56.38、56.22、58.76、35.75、和42.42 mg/g,金属Cu2+离子的吸附量45.99、47.45、47.27、25.26、22.52 mg/g。整体上,高岭土对共同吸附金属离子(Cu2+、Pb2+)的吸附量要小于单一离子的吸附量,这是由于两个金属离子在吸附过程中会相互影响对方的吸附过程。Langmuir模型对实验曲线的拟合度要远远高于Freundlich模型对实验曲线的拟合度,这就说明了Langmuir等温吸附模型更加适用于高岭土吸附金属离子吸附量的变化规律,进而证明了高岭土吸附重金属离子属于表面吸附,被吸附的重金属离子都是相互独立存在的。

  • 加载中
  • 图 1  不同初始浓度作用下高岭土吸附金属离子吸附量

    Figure 1. 

    图 2  不同pH值作用下高岭土吸附金属离子吸附量

    Figure 2. 

    图 3  不同温度作用下高岭土吸附金属离子吸附量

    Figure 3. 

    图 4  高岭土掺量对高岭土吸附金属离子吸附量的影响

    Figure 4. 

    图 5  吸附时间对高岭土吸附金属离子吸附量的影响

    Figure 5. 

    图 6  高岭土对Cu2+和Pb2+共同吸附试的变化规律

    Figure 6. 

    图 7  高岭土的吸附-解吸等温线

    Figure 7. 

    图 8  P/[Vads(P0P−1)]与P/P0之间的关系

    Figure 8. 

    图 9  模型曲线与实验曲线的对比

    Figure 9. 

    表 1  Langmuir和Freundlich模型参数

    Table 1.  Langmuir and Freundlich model parameters

    金属离子Freundlich模型Langmuir模型
    Cu2+KFnR2KQmaxR2
    1.0060.7100.9250.002134.9410.954
    Pb2+KFnR2KQmaxR2
    3.1940.5280.9130.006102.4610.960
    下载: 导出CSV
  • [1]

    许斌, 韩萍, 薛玉芬. 污水厂中草甘膦降解菌的筛选及其降解特性研究[J]. 中国农学通报, 2021, 37(14): 84-89.XU B, HAN P, XUE Y F. Screening of glyphosate-degrading bacteria in wastewater plants and their degradation characteristics[J]. Chinese Agronomy Bulletin, 2021, 3 7(14): 84-89.

    XU B, HAN P, XUE Y F. Screening of glyphosate-degrading bacteria in wastewater plants and their degradation characteristics[J]. Chinese Agronomy Bulletin, 2021, 3 7(14): 84-89.

    [2]

    闫英师, 李玉凤, 赵礼兵. 改性钢渣吸附重金属离子的研究现状[J]. 矿产综合利用, 2021(1):8-13.YAN Y S, LI Y F, ZHAO L B. Research status of heavy metal ions adsorption by modified steel slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):8-13 doi: 10.3969/j.issn.1000-6532.2021.01.002

    YAN Y S, LI Y F, ZHAO L B. Research status of heavy metal ions adsorption by modified steel slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):8-13 doi: 10.3969/j.issn.1000-6532.2021.01.002

    [3]

    胡超, 包惠明, 迟恩涛, 等. 高岭土尾矿沥青混合料抗腐性能实验与机理研究[J]. 矿产综合利用, 2020(5):161-168.HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. doi: 10.3969/j.issn.1000-6532.2020.05.026

    HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. doi: 10.3969/j.issn.1000-6532.2020.05.026

    [4]

    罗宿星, 陈华仕, 牟青松, 等. 黄铁矿的吸附性能研究现状及进展[J]. 矿产综合利用, 2020(5):26-33.LUO S X, CHEN H S, MOU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.

    LUO S X, CHEN H S, MOU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.

    [5]

    孔贇, 田焜, 王月兰, 等. 改性高岭土尾矿复合水晶废渣在水泥基材料中的应用研究[J]. 混凝土与水泥制品, 2018(10): 103-106.KONG Y, TIAN K, WANG Y L , et al. Research on the application of modified kaolin tailings composite crystal waste in cementitious materials[J]. Concrete and Cement Products, 2018(10): 103-106.

    KONG Y, TIAN K, WANG Y L , et al. Research on the application of modified kaolin tailings composite crystal waste in cementitious materials[J]. Concrete and Cement Products, 2018(10): 103-106.

    [6]

    曾琴, 周义朋, 黎广荣, 等. 高岭土对酸性水中铀的吸附试验[J]. 有色金属(冶炼部分), 2021(5):97-102.ZENG Q, ZHOU Y P, LI G R, et al. Adsorption test of kaolin on uranium in acidic water[J]. Nonferrous Metals(Extractive Metallurgy ), 2021(5):97-102.

    ZENG Q, ZHOU Y P, LI G R, et al. Adsorption test of kaolin on uranium in acidic water[J]. Nonferrous Metals(Extractive Metallurgy ), 2021(5):97-102.

    [7]

    祝雯霞, 张其武, 李学伟, 等. 活化蛇纹石促进磷酸改性高岭土对K+的吸附试验研究[J]. 金属矿山, 2020(11):134-140.ZHU M X, ZHANG Q W, LI X W, et al. Experimental study on the adsorption of K+ by activated serpentine to promote phosphate-modified kaolin[J]. Metal Mining, 2020(11):134-140.

    ZHU M X, ZHANG Q W, LI X W, et al. Experimental study on the adsorption of K+ by activated serpentine to promote phosphate-modified kaolin[J]. Metal Mining, 2020(11):134-140.

    [8]

    左继超, 胡红青, 刘永红, 等. 磷和柠檬酸共存对高岭石和针铁矿吸附铅的影响[J]. 土壤学报, 2017, 54(1):265-272.ZUO J C, HU H Q, LIU Y H, et al. Effect of coexistence of phosphorus and citric acid on the adsorption of lead by kaolinite and clinoptilolite[J]. Soil Journal, 2017, 54(1):265-272.

    ZUO J C, HU H Q, LIU Y H, et al. Effect of coexistence of phosphorus and citric acid on the adsorption of lead by kaolinite and clinoptilolite[J]. Soil Journal, 2017, 54(1):265-272.

    [9]

    黄亮国, 朱燕娟, 赵韦人, 等. 高岭土最佳分散条件的确定与探讨[J]. 中国造纸, 2009, 28(6):18-21.HUANG L G, ZHU Y J, ZHAO W R, et al. Determination and exploration of optimal dispersion conditions of kaolin[J]. China Paper Making, 2009, 28(6):18-21.

    HUANG L G, ZHU Y J, ZHAO W R, et al. Determination and exploration of optimal dispersion conditions of kaolin[J]. China Paper Making, 2009, 28(6):18-21.

    [10]

    王曼曼, 石林, 张洋洋. 伊利石合成沸石相吸附材料及对水中Ni2+的吸附[J]. 矿产综合利用, 2021(2):192-198.WANG M M, SHI L, ZHANG Y Y. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    WANG M M, SHI L, ZHANG Y Y. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    [11]

    袁建民. 粘土矿物对重金属离子的吸附能力研究[D]. 石家庄: 河北地质大学, 2018.YUAN J M. Research on the adsorption capacity of clay minerals on heavy metal ions[D]. Shijiazhuang: Hebei University of Geology, 2018.

    YUAN J M. Research on the adsorption capacity of clay minerals on heavy metal ions[D]. Shijiazhuang: Hebei University of Geology, 2018.

    [12]

    Vilar V J , Botelho C M , Boaventura R A . Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour[J]. Journal of Hazardous Materials, 2007.

    [13]

    蒋明琴. 改性高岭土对废水中重金属离子的吸附性能研究[D]. 福州: 福建师范大学, 2009.JIANG M Q. Adsorption performance of modified kaolin on heavy metal ions in wastewater[D]. Fuzhou: Fujian Normal University, 2009.

    JIANG M Q. Adsorption performance of modified kaolin on heavy metal ions in wastewater[D]. Fuzhou: Fujian Normal University, 2009.

    [14]

    何宏平. 粘土矿物与金属离子作用研究[M]. 北京: 石油工业出版社, 2001.HE H P. Study on the interaction between clay minerals and metal ions [M]. Beijing: Petroleum Industry Press, 2001.

    HE H P. Study on the interaction between clay minerals and metal ions [M]. Beijing: Petroleum Industry Press, 2001.

    [15]

    王亚丽, 杨宁, 崔素萍, 等. 高炉渣对废水中Cu2+的吸附率和吸附行为[J]. 北京工业大学学报, 2021, 47(2):186-193.WANG Y L, YANG N, CUI S P, et al. Adsorption rate and adsorption behavior of blast furnace slag on Cu2+ in wastewater[J]. Journal of Beijing University of Technology, 2021, 47(2):186-193.

    WANG Y L, YANG N, CUI S P, et al. Adsorption rate and adsorption behavior of blast furnace slag on Cu2+ in wastewater[J]. Journal of Beijing University of Technology, 2021, 47(2):186-193.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  563
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2021-05-21
刊出日期:  2024-02-25

目录