纳米气泡浮选细粒煤的效果及机理

郭思瑶, 董红卫, 赵通林, 张明泽, 马芳源. 纳米气泡浮选细粒煤的效果及机理[J]. 矿产综合利用, 2024, 45(1): 194-198. doi: 10.3969/j.issn.1000-6532.2024.01.026
引用本文: 郭思瑶, 董红卫, 赵通林, 张明泽, 马芳源. 纳米气泡浮选细粒煤的效果及机理[J]. 矿产综合利用, 2024, 45(1): 194-198. doi: 10.3969/j.issn.1000-6532.2024.01.026
GUO Siyao, DONG Hongwei, ZHAO Tonglin, ZHANG Mingze, MA Fangyuan. Effect and Mechanism of Nanobubbles Flotation for Fine Coal[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 194-198. doi: 10.3969/j.issn.1000-6532.2024.01.026
Citation: GUO Siyao, DONG Hongwei, ZHAO Tonglin, ZHANG Mingze, MA Fangyuan. Effect and Mechanism of Nanobubbles Flotation for Fine Coal[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 194-198. doi: 10.3969/j.issn.1000-6532.2024.01.026

纳米气泡浮选细粒煤的效果及机理

  • 基金项目: 辽宁省高等学校创新团队支持计划(LT2018010)
详细信息
    作者简介: 郭思瑶(1998-),女,研究生,主要从事细粒煤分选
    通讯作者: 赵通林(1970-),男,硕士,从事煤炭和铁浮选方面的研究。
  • 中图分类号: TD952

Effect and Mechanism of Nanobubbles Flotation for Fine Coal

More Information
  • 这是一篇矿物加工工程领域的论文。本研究通过改变浮选捕收剂的用量、起泡剂的用量、给矿速度和充气量等可控因素,针对细粒煤在有纳米气泡和常规气泡条件下进行了浮选柱对比实验研究。在此基础上,阐述了纳米气泡对细粒煤的回收机理。实验结果表明:纳米气泡能够有效提高超细煤颗粒的回收率,保持产品灰分相同的情况下可节省约1/2药剂的用量。此外,较低的充气量条件下,浮选体系中引入纳米气泡依然能够获得较好的分选指标。纳米气泡能够优先吸附在疏水颗粒表面使得细颗粒煤团聚成较大的颗粒,增强了气泡与煤颗粒的碰撞概率从而达到强化浮选的效果。

  • 加载中
  • 图 1  起泡剂用量实验结果

    Figure 1. 

    图 2  捕收剂用量实验结果

    Figure 2. 

    图 3  给矿速度对比实验结果

    Figure 3. 

    图 4  充气量实验结果

    Figure 4. 

    图 5  泡沫与煤颗粒作用的三种作用形式

    Figure 5. 

    表 1  煤样筛析和灰分化验结果

    Table 1.  Results of coal sample screening and ash analysis

    粒级/mm+0.3-0.3+0.1-0.1合计
    灰分/%6.5148.5744.8340.52
    产率/%13.8826.8759.25100
    下载: 导出CSV
  • [1]

    TAO Youjun, LIU Wenli, LU Maixi, et al. A entrapment model of water flow on fine coal in forth flotation[J]. Journal of China University of Mining & Technology, 2004, 14(1):1-5.

    [2]

    SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124:109-116. doi: 10.1016/j.minpro.2013.04.016

    [3]

    张敏, 宋昭峥, 孙珊珊, 等. 微纳米气浮技术用于炼化污水的深度处理[J]. 环境工程学报, 2016, 10(2):599-603.ZHANG M, SONG Z Z, SUN S S, et al. Advanced treatment of refining sewage with a new micro/nano-bubble flotation technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):599-603.

    ZHANG M, SONG Z Z, SUN S S, et al. Advanced treatment of refining sewage with a new micro/nano-bubble flotation technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):599-603.

    [4]

    GUO Lu, SHI Dandan, MENG Dong, et al. New FH peptide-modified ultrasonic nanobubbles for delivery of doxorubicin to cancer-associated fibroblasts[J]. Nanomedicine, 2019, 14(22):2957-2971 doi: 10.2217/nnm-2019-0302

    [5]

    王扬才, 刘又毓, 孙元, 等. 超微气泡技术在对虾室内养殖中的初步应用[J]. 渔业现代化, 2018, 45(2):21-28.WANG Y C, LIU Y Y, SUN Y, et al. Primary application of Micro-Nano-Bubble technology in indoor shrimps aquaculture[J]. Fishery Modernization, 2018, 45(2):21-28.

    WANG Y C, LIU Y Y, SUN Y, et al. Primary application of Micro-Nano-Bubble technology in indoor shrimps aquaculture[J]. Fishery Modernization, 2018, 45(2):21-28.

    [6]

    FAN Maoming, TAO Daniel. HONAKER Rick, et al. Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate[J]. Mining Science and Technology (China), 2010, 20(3):317-338. doi: 10.1016/S1674-5264(09)60205-2

    [7]

    冯其明, 周伟光, 石晴. 纳米气泡的形成及其对微细粒矿物浮选的影响[J]. 中南大学学报(自然科学版), 2017, 48(1):9-15.FENG Q M, ZHOU W G, SHI Q. Formation of nano-bubbles and their influences on ultrafine mineral flotation[J]. Journal of Central South University, 2017, 48(1):9-15.

    FENG Q M, ZHOU W G, SHI Q. Formation of nano-bubbles and their influences on ultrafine mineral flotation[J]. Journal of Central South University, 2017, 48(1):9-15.

    [8]

    王澜, 艾光华, 罗丽芳, 等. 纳米技术浮选技术研究进展[J]. 矿产综合利用, 2020(1):29-32.WANG L, AI G H, LUO L F, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32.

    WANG L, AI G H, LUO L F, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32.

    [9]

    刘安, 韩峰, 李志红, 等. 纳米气泡在微细粒矿物浮选中的应用研究进展[J]. 矿产保护与利用, 2018(3):81-86.LIU A, HAN F, LI Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation[J]. Mineral Protection and Utilization, 2018(3):81-86.

    LIU A, HAN F, LI Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation[J]. Mineral Protection and Utilization, 2018(3):81-86.

    [10]

    SOBHY Ahmed, TAO Daniel. High efficiency nanobubble coal flotation[J]. International Journal of Coal Preparation and Utilization, 2013, 33:242-56. doi: 10.1080/19392699.2013.810623

    [11]

    MEYER C J, DEHLON, D A. Particle collision modeling-A review[J]. Minerals Engineering, 2011, 24(8):719-30. doi: 10.1016/j.mineng.2011.03.015

    [12]

    MA Fangyuan, TAO Dongping, TAO Youjun. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal [J]. International Journal of Coal Preparation and Utilization, 2019, 1-17.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1007
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2021-05-11
刊出日期:  2024-02-25

目录