Influence of Basalt Fiber on Torsion Resistance of Gangue Concrete
-
摘要:
这是一篇陶瓷及复合材料领域的论文。为了提高煤矸石混凝土构件的材料力学性能,采用玄武岩纤维对混凝土进行改性。运用经验公式预测了4种玄武岩纤维掺量下混凝土的弹性模量,利用有限元软件对煤矸石混凝土构件进行扭转数值模拟,并据此提出了极限承载力的经验公式。结果表明:由经验公式得到的煤矸石混凝土弹性模量预测值与实测结果的误差较小;通过数值计算得到的玄武岩纤维改性煤矸石混凝土构件的扭转曲线符合相关实验的实测结果;在煤矸石水泥砂浆中掺入玄武岩纤维可以显著提升煤矸石骨料之间的黏结性能,进而加强煤矸石混凝土构件的抗扭性能。
Abstract:This is an article in the field of ceramics and composites. In order to improve the mechanical properties of concrete, basalt fiber is used to prepare torsional members of gangue concrete. The empirical formula is used to predict the elastic modulus of concrete with four kinds of basalt fiber content. Then, the finite element software is applied to carry out torsion numerical simulation of gangue concrete members and the empirical formula of ultimate bearing capacity is proposed. The results show that the error between the predicted elastic modulus and the measured one is relatively small. The torsion curves of the basalt fiber modified concrete members obtained by numerical calculation accord with the measured results of related tests. Adding basalt fiber into gangue concrete can significantly improve the bonding performance of concrete mortar, which thus strengthens the torsional resistance of concrete members.
-
Key words:
- Ceramics and composites /
- Coal gangue /
- Concrete /
- Torsional member /
- Basalt fiber /
- Finite element /
- Limit torque
-
-
表 1 混凝土的基本配合比/(kg/m3)
Table 1. Basic concrete mix proportio
煤矸石 中砂 水泥 水 粉煤灰 减水剂 680 620 350 175 88 1.8 表 2 煤矸石骨料的材料参数
Table 2. Relevant parameters of ceramist aggregate
抗压强度/
MPa干密度/
(kg/m3)吸水率 表观密度/
(kg/m3)粒径/mm 48.5 1025 8.5% 1285 7.5~22 表 3 混凝土弹性模量的预测结果
Table 3. Prediction results of elastic modulus of concrete
名称 纤维含量/% 0 0.5 1 1.5 经验公式结果/GPa 33.71 33.94 34.77 34.96 实测结果/GPa 33.30 33.40 33.90 34.00 相对误差/% 1.21 1.59 2.50 2.70 -
[1] Xie J H, Zhao J B, et al. Investigation of the high-temperature resistance of sludge ceramsite concrete with recycled fine aggregates and GGBS and its application in hollow blocks[J]. Journal of Building Engineering, 2021, 34.
[2] 谷玲钰, 刘振英, 刘银. 利用煤矸石制备多孔陶瓷的及力学性能研究[J]. 矿产综合利用, 2018(5):135-137.GU L Y, LIU Z Y, LIU Y. Research on the preparation and mechanical properties of porous ceramics using gangue[J]. Mutipurpose Utilization of Mineral Resources, 2018(5):135-137.
GU L Y, LIU Z Y, LIU Y. Research on the preparation and mechanical properties of porous ceramics using gangue[J]. Mutipurpose Utilization of Mineral Resources, 2018(5):135-137.
[3] 王庆贺, 李喆, 张玉琢, 等. 基于两相复合材料的煤矸石混凝土弹性模量研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(2):254-261.WANG Q H, LI Z, ZHANG Y Z, et al. Research on elastic modulus of gangue concrete based on two-phase composite materials[J]. Journal of Shenyang University of Architecture (Natural Science Edition), 2021, 37(2):254-261.
WANG Q H, LI Z, ZHANG Y Z, et al. Research on elastic modulus of gangue concrete based on two-phase composite materials[J]. Journal of Shenyang University of Architecture (Natural Science Edition), 2021, 37(2):254-261.
[4] 邱继生, 姚谦峰. 纯扭作用下钢纤维混凝土梁极限扭矩计算方法的研究[J]. 工业建筑, 2010, 40(1):78-81+97.QIU J S, YAO Q F. Research on the calculation method of ultimate torque of steel fiber concrete beams under pure torsion[J]. Industrial Building, 2010, 40(1):78-81+97.
QIU J S, YAO Q F. Research on the calculation method of ultimate torque of steel fiber concrete beams under pure torsion[J]. Industrial Building, 2010, 40(1):78-81+97.
[5] 张凯军, 霍冀川, 黄阳, 等. 攀西地区某用于制造纤维的玄武岩工艺矿物学研究[J]. 矿产综合利用, 2021(2):163-167.ZHANG K J, HUO J C, HUANG Y, et al. Process mineralogical study of a basalt used for fiber manufacturing in West Panzhi region[J]. Mutipurpose Utilization of Mineral Resources, 2021(2):163-167. doi: 10.3969/j.issn.1000-6532.2021.02.028
ZHANG K J, HUO J C, HUANG Y, et al. Process mineralogical study of a basalt used for fiber manufacturing in West Panzhi region[J]. Mutipurpose Utilization of Mineral Resources, 2021(2):163-167. doi: 10.3969/j.issn.1000-6532.2021.02.028
[6] 张保涛, 刘继明, 李得生, 等. 矩形型钢混凝土复合受扭构件抗扭刚度的研究[J]. 混凝土, 2019(5):24-27.ZHANG B T, LIU J M, LI D S, et al. Research on torsional stiffness of rectangular section steel-concrete composite torsional members[J]. Concrete, 2019(5):24-27. doi: 10.3969/j.issn.1002-3550.2019.05.007
ZHANG B T, LIU J M, LI D S, et al. Research on torsional stiffness of rectangular section steel-concrete composite torsional members[J]. Concrete, 2019(5):24-27. doi: 10.3969/j.issn.1002-3550.2019.05.007
[7] 孙秋荣, 刘磊. 轻骨料纤维喷射混凝土力学性能及破坏特征数值研究[J]. 复合材料科学与工程, 2021(4):28-34+49.ZHANG Q R, LIU L. Numerical study on mechanical properties and damage characteristics of lightweight aggregate fiber shotcrete[J]. Composites Science and Engineering, 2021(4):28-34+49.
ZHANG Q R, LIU L. Numerical study on mechanical properties and damage characteristics of lightweight aggregate fiber shotcrete[J]. Composites Science and Engineering, 2021(4):28-34+49.
[8] 孙秋荣, 刘磊. 轻骨料纤维喷射混凝土力学性能及破坏特征数值研究[J]. 复合材料科学与工程, 2021(4):28-34+49.SUN Q R, LIU L. Numerical study on mechanical properties and damage characteristics of lightweight aggregate fiber shotcrete[J]. Composites Science and Engineering, 2021(4):28-34+49.
SUN Q R, LIU L. Numerical study on mechanical properties and damage characteristics of lightweight aggregate fiber shotcrete[J]. Composites Science and Engineering, 2021(4):28-34+49.
[9] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8):96-105.WANG Y H, WANG Y Y, HU S W. Mechanical properties of CFRP ring-confined steel-tube concrete columns for marine structures under compressive bending and torsion loading[J]. Engineering Mechanics, 2019, 36(8):96-105.
WANG Y H, WANG Y Y, HU S W. Mechanical properties of CFRP ring-confined steel-tube concrete columns for marine structures under compressive bending and torsion loading[J]. Engineering Mechanics, 2019, 36(8):96-105.
[10] 王怀亮, 朱建威. 高性能煤矸石混凝土高温后受压本构关系研究[J]. 建筑结构学报, 2019, 40(11):200-209.WANG H L, ZHU J W. Research on the compressive principal relationship of high-performance gangue concrete after high temperature[J]. Journal of Building Structures, 2019, 40(11):200-209.
WANG H L, ZHU J W. Research on the compressive principal relationship of high-performance gangue concrete after high temperature[J]. Journal of Building Structures, 2019, 40(11):200-209.
[11] 黄磊, 王小平, 等. 煤矸石混凝土单轴受力下的塑性损伤模型应用研究[J]. 建筑结构, 2012, 42(7):81-83+44.HUANG L, WANG X P, et al. Application of plastic damage modeling to gangue concrete under uniaxial force[J]. Building Structure, 2012, 42(7):81-83+44.
HUANG L, WANG X P, et al. Application of plastic damage modeling to gangue concrete under uniaxial force[J]. Building Structure, 2012, 42(7):81-83+44.
[12] 范新 宇, 邵永健, 杭子彦, 等. 型钢混凝土梁弯扭性能实验研究[J]. 工业建筑, 2021, 51(2):90-97.FAN X Y, SHAO Y J, HANG Z Y, e tal. Experimental study on flexural and torsional properties of section steel and concrete beams[J]. Industrial Building, 2021, 51(2):90-97.
FAN X Y, SHAO Y J, HANG Z Y, e tal. Experimental study on flexural and torsional properties of section steel and concrete beams[J]. Industrial Building, 2021, 51(2):90-97.
-