煤气化细渣疏水-亲水双液炭/灰分离实验

薛中华, 董连平, 樊民强, 杨崇义, 王建成, 鲍卫仁. 煤气化细渣疏水-亲水双液炭/灰分离实验[J]. 矿产综合利用, 2024, 45(3): 63-69. doi: 10.3969/j.issn.1000-6532.2024.03.010
引用本文: 薛中华, 董连平, 樊民强, 杨崇义, 王建成, 鲍卫仁. 煤气化细渣疏水-亲水双液炭/灰分离实验[J]. 矿产综合利用, 2024, 45(3): 63-69. doi: 10.3969/j.issn.1000-6532.2024.03.010
XUE Zhonghua, DONG Lianping, FAN Minqiang, YANG Chongyi, WANG Jiancheng, BAO Weiren. Extraction of Carbon from Fine Coal Gasification Slag by Hydrophobic-hydrophilic Separation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 63-69. doi: 10.3969/j.issn.1000-6532.2024.03.010
Citation: XUE Zhonghua, DONG Lianping, FAN Minqiang, YANG Chongyi, WANG Jiancheng, BAO Weiren. Extraction of Carbon from Fine Coal Gasification Slag by Hydrophobic-hydrophilic Separation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 63-69. doi: 10.3969/j.issn.1000-6532.2024.03.010

煤气化细渣疏水-亲水双液炭/灰分离实验

  • 基金项目: 国家重点研发计划(2019YFC190430&22022YFB4101604);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题资助项目(2021-K81);国家能源集团煤制油研究院技术[2020]010课题资助项目
详细信息
    作者简介: 薛中华(1997-),男,硕士研究生,主要研究方向为固废利用
    通讯作者: 董连平(1976-),男,副教授,博士,主要研究方向为固废利用。
  • 中图分类号: TD982;TD984

Extraction of Carbon from Fine Coal Gasification Slag by Hydrophobic-hydrophilic Separation

More Information
  • 这是一篇矿业工程领域的论文。煤气化细渣是煤气化过程中产生的一种固体废物,其中残炭严重制约了其资源化利用,从煤气化细渣中提取残炭是一个紧迫的问题。本研究应用疏水-亲水双液分离技术来提取煤气化细渣中残碳,其主要的影响因素有搅拌速度、搅拌时间、疏水液体用量、矿浆浓度、矿浆温度和疏水液体种类。疏水-亲水双液分离技术对煤气化细渣有优异的提碳降灰效果,其碳产品的灰分可达30%以下,灰质产品的灰分可达95%以上。通过表征分析揭示了分离机理,结果表明残炭对煤油的吸附强度远超灰质,使得煤油处理过的残炭疏水性大幅度增加,容易被油相捕获。本研究可为煤气化细渣的高效提碳降灰提供重要指导,有助于实现煤气化固废的综合利用。

  • 加载中
  • 图 1  搅拌速度对HHS分离效果的影响

    Figure 1. 

    图 2  搅拌时间对HHS分离效果的影响

    Figure 2. 

    图 3  疏水液体对HHS分离效果的影响

    Figure 3. 

    图 4  矿浆浓度对HHS分离效果的影响

    Figure 4. 

    图 5  矿浆温度对HHS分离效果的影响

    Figure 5. 

    图 6  煤气化细渣原样、精矿和尾矿XRD

    Figure 6. 

    图 7  吸/脱附处理后煤气化渣残炭与灰质热流线

    Figure 7. 

    图 8  煤油的FTIR

    Figure 8. 

    图 9  经煤油处理前后的残炭和灰质的FTIR

    Figure 9. 

    表 1  神宁炉煤气化细渣筛分实验结果

    Table 1.  Particle size composition of the samples

    粒度/mm+0.5-0.5+0.25-0.25+0.125-0.125+0.074-0.074+0.045-0.045总计
    产率/%3.567.4310.9812.8211.4753.74100.00
    灰分/%90.0086.4064.7761.6572.1684.6178.39
    下载: 导出CSV

    表 2  神宁炉煤气化细渣的工业分析和元素分析

    Table 2.  Proximate and ultimate analysis of coal samples

    工业分析/%元素分析/%
    水分Mad灰分Aad挥发分Vad固定碳FCadCHNOS
    0.4679.802.4012.1619.180.180.120.410.31
    下载: 导出CSV

    表 3  实验方案

    Table 3.  Test schemes

    编号 搅拌速度/
    (r/min)
    搅拌时间/
    min
    m疏水液体∶m样品 矿浆浓度/
    (g/L)
    温度/
    试剂
    1 变量 5 1:2 50 10 煤油
    2 1800 变量 1:2 50 10 煤油
    3 1800 5 变量 50 10 煤油
    4 1800 5 1:2 变量 10 煤油
    5 1800 5 1:2 50 变量 煤油
    6 1800 5 1:2 50 10 变量
    下载: 导出CSV

    表 4  疏水液体种类对炭/灰分离效果的影响

    Table 4.  Effects of various hydrophobic liquids on the HHS separation

    试剂黏度
    (20 ℃/cp)
    精矿
    灰分/%
    尾矿
    灰分/%
    可燃体
    回收率/%
    正戊烷0.2325.7497.7992.00
    石油醚0.3024.5997.9692.42
    正庚烷0.4023.1297.4989.46
    煤油2.5027.0597.4491.10
    下载: 导出CSV

    表 5  神宁炉气化细渣原样及炭/灰分离产品的XRF分析结果/%

    Table 5.  XRF results of the samples and separation products

    名称SiO2Al2O3Fe2O3CaOMgOSO3TiO2K2ONa2OP2O5合计
    原样53.7815.0210.089.013.112.791.941.871.140.4299.16
    精矿50.1915.3912.159.363.112.611.292.211.651.1199.07
    尾矿51.7115.5710.258.843.232.701.992.701.990.3599.33
    折合灰分的原样42.1511.777.907.062.442.191.521.470.890.3377.72
    折合灰分的精矿11.083.402.682.070.690.580.280.490.360.2421.86
    折合灰分的尾矿50.3115.159.978.603.142.631.942.631.940.3496.65
    下载: 导出CSV

    表 6  神宁炉煤气化炉气化细渣密度组成

    Table 6.  Density composition of the sample

    密度/(g/cm)产率/%灰分/%累计产率/%累计灰分/%
    -2.114.3430.7214.3430.72
    2.1-2.25.1354.8519.4737.07
    2.2-2.310.5360.3030.0045.23
    2.3-2.420.8783.1750.8760.79
    +2.449.1396.39100.0078.28
    下载: 导出CSV

    表 7  官能团种类及其对应吸收峰范围

    Table 7.  Type of functional groups and their corresponding absorption peak range

    吸收峰范围/cm-1官能团种类
    3750~3000-OH与N-H特征峰
    3100~2750C-H脂肪族振动区
    3550~3450分子间氢键-二分子缔合
    3500~3200分子间氢键-多分子缔合
    2954.44、2922.56、2854.25饱和烷烃氢的C-H伸缩振动
    1470~1450-CH(CH3)2的C-H伸缩振动
    725.24碳原子个数大于4的-C(CH2)n-
    1100~1000Si-O-Si伸缩振动
    下载: 导出CSV

    表 8  接触角测试结果

    Table 8.  Test results of the contact angle

    残炭 煤油处理后的残炭 灰质 煤油处理后的灰质
    36.11 107.82 28.08 80.19
    下载: 导出CSV
  • [1]

    杨丹, 王海锋, 黄志刚, 等. 纳米煤制备及其改善煤泥浮选的机理研究[J]. 矿产综合利用, 2021(2):70-76.YANG D, WANG H F, HUANG Z G, et al. Preparation of nano coal and its mechanism of improvement on coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(2):70-76. doi: 10.3969/j.issn.1000-6532.2021.02.014

    YANG D, WANG H F, HUANG Z G, et al. Preparation of nano coal and its mechanism of improvement on coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(2):70-76. doi: 10.3969/j.issn.1000-6532.2021.02.014

    [2]

    史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(6):1-10.SHI D, ZHANG J B, YANG C N, et al. Progress of coal gasification ash decarbonization technology[J]. Clean Coal Technology, 2020, 26(6):1-10.

    SHI D, ZHANG J B, YANG C N, et al. Progress of coal gasification ash decarbonization technology[J]. Clean Coal Technology, 2020, 26(6):1-10.

    [3]

    史兆臣, 戴高峰, 王学斌, 等. 煤气化细渣的资源化综合利用技术研究进展[J]. 华电技术, 2020, 42(7):63-73.SHI Z C, DAI G F, WANG X B, et al. Research progress on resource utilization technology of coal gasification fine slag[J]. Huadian Technology, 2020, 42(7):63-73.

    SHI Z C, DAI G F, WANG X B, et al. Research progress on resource utilization technology of coal gasification fine slag[J]. Huadian Technology, 2020, 42(7):63-73.

    [4]

    刘淑琴, 牛茂斐, 齐凯丽, 等. 煤炭地下气化特征污染物迁移行为探测[J]. 煤炭学报, 2018, 43(9):2618-2624.LIU S Q, NIU M F, QI K L, et al. Detection of characteristic pollutant migration behavior in underground coal gasification[J]. Journal of China Coal Society, 2018, 43(9):2618-2624.

    LIU S Q, NIU M F, QI K L, et al. Detection of characteristic pollutant migration behavior in underground coal gasification[J]. Journal of China Coal Society, 2018, 43(9):2618-2624.

    [5]

    晁岳建, 王洪记. 循环流化床锅炉掺烧气化渣和煤泥的可行性研究[J]. 化肥工业, 2015(3):48-50.CHAO Y J, WANG H J. The feasibility study of mixing gasification slag and coal slime in a circulating fluidized bed boiler[J]. Chemical Fertilizer Industry, 2015(3):48-50. doi: 10.3969/j.issn.1006-7779.2015.03.015

    CHAO Y J, WANG H J. The feasibility study of mixing gasification slag and coal slime in a circulating fluidized bed boiler[J]. Chemical Fertilizer Industry, 2015(3):48-50. doi: 10.3969/j.issn.1006-7779.2015.03.015

    [6]

    董永波. 水煤浆气化细渣碳资源回收及循环利用[J]. 氮肥技术, 2018, 39(3):25-26.DONG Y B. Recovery and recycling of carbon resources from coal-water slurry gasification fine slag[J]. Nitrogenous Fertilizer Technology, 2018, 39(3):25-26.

    DONG Y B. Recovery and recycling of carbon resources from coal-water slurry gasification fine slag[J]. Nitrogenous Fertilizer Technology, 2018, 39(3):25-26.

    [7]

    宁永安, 段一航, 高宁博, 等. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术, 2020(S1): 14-19.NING Y A, DUAN Y H , GAO N B, et al. Research progress in the recovery and utilization of coal gasification slag components[J]. Clean Coal Technology, 2020(S1): 14-19.

    NING Y A, DUAN Y H , GAO N B, et al. Research progress in the recovery and utilization of coal gasification slag components[J]. Clean Coal Technology, 2020(S1): 14-19.

    [8]

    曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193.QU J S, ZHANG J B, SUN Z G , et al. Research progress in comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193.

    QU J S, ZHANG J B, SUN Z G , et al. Research progress in comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193.

    [9]

    胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学, 2019.HU W H. Basic research on activation separation and resource utilization of aluminum and silicon components of coal gasification slag[D]. Beijing: University of Chinese Academy of Sciences, 2019.

    HU W H. Basic research on activation separation and resource utilization of aluminum and silicon components of coal gasification slag[D]. Beijing: University of Chinese Academy of Sciences, 2019.

    [10]

    汤云. 利用气化炉渣和煤矸石制备Sialon基复相陶瓷[D]. 西安: 西安建筑科技大学, 2011.TANG Y. Preparation of Sialon-based multiphase ceramics using gasification slag and coal gangue[D]. Xi'an: Xi'an University of Architecture and Technology, 2011.

    TANG Y. Preparation of Sialon-based multiphase ceramics using gasification slag and coal gangue[D]. Xi'an: Xi'an University of Architecture and Technology, 2011.

  • 加载中

(9)

(8)

计量
  • 文章访问数:  747
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2022-07-11
刊出日期:  2024-06-25

目录