我国熔融还原炼铁技术发展现状及展望

兰臣臣, 高艳甲, 吕庆, 张振锋, 高峰, 张淑会. 我国熔融还原炼铁技术发展现状及展望[J]. 矿产综合利用, 2024, 45(3): 96-101. doi: 10.3969/j.issn.1000-6532.2024.03.016
引用本文: 兰臣臣, 高艳甲, 吕庆, 张振锋, 高峰, 张淑会. 我国熔融还原炼铁技术发展现状及展望[J]. 矿产综合利用, 2024, 45(3): 96-101. doi: 10.3969/j.issn.1000-6532.2024.03.016
LAN Chenchen, GAO Yanjia, LYU Qing, ZHANG Zhenfeng, GAO Feng, ZHANG Shuhui. Development Status and Prospect of Smelting Reduction Ironmaking Technology in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 96-101. doi: 10.3969/j.issn.1000-6532.2024.03.016
Citation: LAN Chenchen, GAO Yanjia, LYU Qing, ZHANG Zhenfeng, GAO Feng, ZHANG Shuhui. Development Status and Prospect of Smelting Reduction Ironmaking Technology in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 96-101. doi: 10.3969/j.issn.1000-6532.2024.03.016

我国熔融还原炼铁技术发展现状及展望

  • 基金项目: 河北省自然科学基金(E2021209046, E2019209424, E2020209208); 唐山市科技计划项目(21130209C)
详细信息
    作者简介: 兰臣臣(1989-),男,博士,副教授,研究方向为钢铁冶金
  • 中图分类号: TD951

Development Status and Prospect of Smelting Reduction Ironmaking Technology in China

  • 这是一篇冶金工程领域的论文。随着钢铁企业对污染物排放问题的日益重视,非高炉炼铁工艺逐渐成为了人们关注的热点问题。目前我国已经实现工业化的非高炉炼铁技术以宝钢的Corex工艺和山东墨龙的HIsmelt工艺两种典型的熔融还原炼铁技术为主,也是目前国内非高炉炼铁技术的热点工艺。本文对Corex工艺和HIsmelt工艺的流程进行阐述,并对比两种工艺的技术指标与优缺点,探讨了国内两种工艺的研究现状,并结合各工艺的特点对其发展方向进行展望。

  • 加载中
  • [1]

    张志霞. 熔融还原炼铁与高炉炼铁能耗分析[J]. 现代冶金, 2019, 47(1):31-33.ZHANG Z X. Energy consumption analysis of smelting reduction ironmaking and blast furnace ironmaking[J]. Modern Metallurgy, 2019, 47(1):31-33.

    ZHANG Z X. Energy consumption analysis of smelting reduction ironmaking and blast furnace ironmaking[J]. Modern Metallurgy, 2019, 47(1):31-33.

    [2]

    储满生, 赵庆杰. 中国发展非高炉炼铁的现状及展望[J]. 中国冶金, 2008, 18(9):1-9.CHU M S, ZHAO Q J. Present status and development perspective of direct reduction and smelting reduction in China[J]. China Metallurgy, 2008, 18(9):1-9. doi: 10.3969/j.issn.1006-9356.2008.09.001

    CHU M S, ZHAO Q J. Present status and development perspective of direct reduction and smelting reduction in China[J]. China Metallurgy, 2008, 18(9):1-9. doi: 10.3969/j.issn.1006-9356.2008.09.001

    [3]

    张晓华, 师学峰, 赵凯, 等. 非高炉炼铁工艺流程发展现状及前景展望[J]. 矿产综合利用, 2020(2):8-15.ZHANG X H, SHI X F, ZHAO K, et al. Development status and prospect of smelting reduction ironmaking process[J]. Multipurpose Utilization of Mineral Resources, 2020(2):8-15. doi: 10.3969/j.issn.1000-6532.2020.02.002

    ZHANG X H, SHI X F, ZHAO K, et al. Development status and prospect of smelting reduction ironmaking process[J]. Multipurpose Utilization of Mineral Resources, 2020(2):8-15. doi: 10.3969/j.issn.1000-6532.2020.02.002

    [4]

    《柳钢科技》编辑部. 2021年中国非高炉炼铁行业现状[J]. 柳钢科技, 2021(4):4.Editorial Department of Liugang Science and Technology. Current situation of China's non blast furnace ironmaking industry in 2021[J]. Liugang Technology, 2021(4):4.

    Editorial Department of Liugang Science and Technology. Current situation of China's non blast furnace ironmaking industry in 2021[J]. Liugang Technology, 2021(4):4.

    [5]

    田津. 非高炉炼铁新工艺的探索[D]. 天津: 天津大学, 2018.TIAN J. Exploration of new process for non-blast furnace ironmaking[D]. Tianjin: Tianjin University, 2018.

    TIAN J. Exploration of new process for non-blast furnace ironmaking[D]. Tianjin: Tianjin University, 2018.

    [6]

    贾利军, 汤彦玲. HIsmelt熔融还原炼铁技术的工艺煤耗及生产实践[J]. 山东冶金, 2021, 43(4):3-6.JIA L J, TANG Y L. Coal consumption and production practice of the HIsmelt smelting reduction ironmaking technology[J]. Shandong Metallurgy, 2021, 43(4):3-6.

    JIA L J, TANG Y L. Coal consumption and production practice of the HIsmelt smelting reduction ironmaking technology[J]. Shandong Metallurgy, 2021, 43(4):3-6.

    [7]

    贾利军. Hismelt熔融还原技术的优化设计[A]//第十五届全国大高炉炼铁学术年会论文集[C]. 新疆: 中国金属学会炼铁分会, 2014, 949-953.JIA L J. Optimal design of HIsmelt smelting reduction technology[A]//Proceedings of the 15th National Symposium on Blast Furnace Ironmaking[C]. Xinjiang: Ironmaking Branch of China Metal Society, 2014, 949-953.

    JIA L J. Optimal design of HIsmelt smelting reduction technology[A]//Proceedings of the 15th National Symposium on Blast Furnace Ironmaking[C]. Xinjiang: Ironmaking Branch of China Metal Society, 2014, 949-953.

    [8]

    林金嘉, 宋文刚, 夏文尧. 宝钢 COREX-3000 的生产技术进步和改进方向[A]//第五届宝钢学术年会论文集[C]. 上海: 宝钢集团, 2013, 1-8.LIN J J, SONG W G, XIA W Y . Production technology progress and improvement direction of Corex-3000 in Baosteel[A]// Proceedings of the 5th Baosteel Annual Academic Conference[C]. Shanghai: Baosteel Group, 2013, 1-8.

    LIN J J, SONG W G, XIA W Y . Production technology progress and improvement direction of Corex-3000 in Baosteel[A]// Proceedings of the 5th Baosteel Annual Academic Conference[C]. Shanghai: Baosteel Group, 2013, 1-8.

    [9]

    张曦. FINEX与COREX及高炉流程能源消耗对比解析[J]. 资源节约与环保, 2019(4):2.ZHANG X. Comparison and analysis of energy consumption between Finex, Corex and blast furnace process[J]. Resource Conservation and Environmental Protection, 2019(4):2. doi: 10.3969/j.issn.1673-2251.2019.04.013

    ZHANG X. Comparison and analysis of energy consumption between Finex, Corex and blast furnace process[J]. Resource Conservation and Environmental Protection, 2019(4):2. doi: 10.3969/j.issn.1673-2251.2019.04.013

    [10]

    王敏, 任荣霞, 董洪旺, 等. 熔融还原炼铁最新技术及工艺路线选择探讨[J]. 钢铁, 2020, 55(8):145-150.WANG M, REN R X, DONG H W, et al. Latest technology of melting reduction ironmaking process and discussion of process route choice[J]. Iron and Steel, 2020, 55(8):145-150.

    WANG M, REN R X, DONG H W, et al. Latest technology of melting reduction ironmaking process and discussion of process route choice[J]. Iron and Steel, 2020, 55(8):145-150.

    [11]

    张志霞. Corex熔融还原技术研究进展[J]. 河北冶金, 2019(3):14-16.ZHANG Z X. Research on Corex smelting reduction tenichque[J]. Hebei Metallurgy, 2019(3):14-16.

    ZHANG Z X. Research on Corex smelting reduction tenichque[J]. Hebei Metallurgy, 2019(3):14-16.

    [12]

    张建良, 刘征建, 焦克新, 等. 炼铁新技术及基础理论研究进展[J]. 工程科学学报, 2021, 43(12):1630-1646.ZHANG J L, LIU Z J, JIAO K X, et al. Progress of new technologies and fundamental theory about ironmaking[J]. Chinese Journal of Engineering, 2021, 43(12):1630-1646. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005

    ZHANG J L, LIU Z J, JIAO K X, et al. Progress of new technologies and fundamental theory about ironmaking[J]. Chinese Journal of Engineering, 2021, 43(12):1630-1646. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005

    [13]

    胡俊鸽, 高战敏. Corex、Finex和HIsmelt技术的发展近况[J]. 钢铁研究, 2007, 35(4):55-58.HU J G, GAO Z M. Development of Corex, Finex and HIsmelt technologies[J]. Research on Iron & Steel, 2007, 35(4):55-58. doi: 10.3969/j.issn.1001-1447.2007.04.015

    HU J G, GAO Z M. Development of Corex, Finex and HIsmelt technologies[J]. Research on Iron & Steel, 2007, 35(4):55-58. doi: 10.3969/j.issn.1001-1447.2007.04.015

    [14]

    张建良, 李克江, 张冠琪, 等. 山东墨龙Hismelt工艺的技术创新及最新生产指标[J]. 炼铁, 2018, 37(2):56-59.ZHANG J L, LI K J, ZHANG G Q, et al. Technological innovation and latest production index of Shandong Molong HIsmelt process[J]. Ironmaking, 2018, 37(2):56-59.

    ZHANG J L, LI K J, ZHANG G Q, et al. Technological innovation and latest production index of Shandong Molong HIsmelt process[J]. Ironmaking, 2018, 37(2):56-59.

    [15]

    孟玉杰, 曹朝真, 梅丛华, 等. HIsmelt工艺的内衬寿命与煤气利用问题探析[J]. 炼铁, 2018, 37(3):59-62.MENG Y J, CAO C Z, MEI C H, et al. Analysis on inner lining service life and gas utilization of HIsmelt process[J]. Ironmaking, 2018, 37(3):59-62.

    MENG Y J, CAO C Z, MEI C H, et al. Analysis on inner lining service life and gas utilization of HIsmelt process[J]. Ironmaking, 2018, 37(3):59-62.

    [16]

    曹朝真, 张福明, 毛庆武, 等. 我国首座HIsmelt工业装置的设计优化与技术进展[J]. 炼铁, 2016, 35(5):59-62.CAO C Z, ZHANG F M, MAO Q W, et al. Design optimization and technical progress of the first HIsmelt industrial plant in China[J]. Ironmaking, 2016, 35(5):59-62.

    CAO C Z, ZHANG F M, MAO Q W, et al. Design optimization and technical progress of the first HIsmelt industrial plant in China[J]. Ironmaking, 2016, 35(5):59-62.

    [17]

    应自伟, 储满生, 唐珏, 等. 非高炉炼铁工艺现状及未来适应性分析[J]. 河北冶金, 2019(6):1-7.YING Z W, CHU M S, TANG J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process[J]. Hebei Metallurgy, 2019(6):1-7.

    YING Z W, CHU M S, TANG J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process[J]. Hebei Metallurgy, 2019(6):1-7.

    [18]

    王磊. 从欧冶炉的“前世今生”看中国宝武低碳发展[N]. 中国冶金报, 2021-6-8, (2).WANG L. On the low carbon development of Baowu in China from the "past and present life" of Ouye furnace[N]. China Metallurgical News, 2021-6-8 (2).

    WANG L. On the low carbon development of Baowu in China from the "past and present life" of Ouye furnace[N]. China Metallurgical News, 2021-6-8 (2).

    [19]

    徐大安, 吴铿, 王宁, 等. COREX用煤高温成焦质量分析及预测模型[J]. 过程工程学报, 2016, 16(2):252-258.XU D A, WU K, WANG N, et al. Analysis on coking quality of coal for COREX and prediction model[J]. The Chinese Journal of Process Engineering, 2016, 16(2):252-258. doi: 10.12034/j.issn.1009-606X.216023

    XU D A, WU K, WANG N, et al. Analysis on coking quality of coal for COREX and prediction model[J]. The Chinese Journal of Process Engineering, 2016, 16(2):252-258. doi: 10.12034/j.issn.1009-606X.216023

    [20]

    湛文龙, 吴铿, 徐万仁, 等. COREX熔融气化炉中块煤裂化现象[J]. 钢铁, 2013, 48(1):20-23.ZHAN W L, WU K, XU W R, et al. Lump coals cracking in COREX melter gasifier[J]. Iron and Steel, 2013, 48(1):20-23.

    ZHAN W L, WU K, XU W R, et al. Lump coals cracking in COREX melter gasifier[J]. Iron and Steel, 2013, 48(1):20-23.

    [21]

    刘起航, 吴铿, 杜瑞岭, 等. COREX流程中块煤/半焦性质与粉化关系探讨[J]. 钢铁, 2016, 51(8):11-16.LIU Q H, WU K, DU R L, et al. Discussion of lump coal/char properties with its disintegration in COREX process[J]. Iron and Steel, 2016, 51(8):11-16.

    LIU Q H, WU K, DU R L, et al. Discussion of lump coal/char properties with its disintegration in COREX process[J]. Iron and Steel, 2016, 51(8):11-16.

    [22]

    于春梅, 滕海鹏, 林豪, 等. Corex用焦在铁水中的渗碳特性[J]. 钢铁, 2021, 56(11):39-46.YU C M, TENG H P, LIN H, et al. Coke dissolution characteristics in molten iron of Corex[J]. Iron and Steel, 2021, 56(11):39-46.

    YU C M, TENG H P, LIN H, et al. Coke dissolution characteristics in molten iron of Corex[J]. Iron and Steel, 2021, 56(11):39-46.

    [23]

    应伟峰. Corex预还原竖炉的数学物理模拟[D]. 沈阳: 东北大学, 2013.YING W F. Mathematical and physical simulation of COREX pre-reduction shaft furnace[D]. Shenyang: Northeastern University, 2013.

    YING W F. Mathematical and physical simulation of COREX pre-reduction shaft furnace[D]. Shenyang: Northeastern University, 2013.

    [24]

    杜斌斌, 吴胜利, 周恒, 等. COREX竖炉结瘤对物料运动行为影响的DEM模拟[J]. 钢铁, 2020, 55(1):12-19.DU B B, WU S L, ZHOU H, et al. Effect of scaffolding on solid flow in COREX shaft furnace by discrete element simulation method[J]. Iron and Steel, 2020, 55(1):12-19.

    DU B B, WU S L, ZHOU H, et al. Effect of scaffolding on solid flow in COREX shaft furnace by discrete element simulation method[J]. Iron and Steel, 2020, 55(1):12-19.

    [25]

    Yang You, Zhiguo Luo, Runyu Yang, et al. Experimental study of the effects of operation conditions on burden distribution in the COREX melter gasifier[J]. ISIJ International, 2018, 58(2):267-273. doi: 10.2355/isijinternational.ISIJINT-2017-474

    [26]

    Yang You, Yaoyu Li, Zhiguo Luo, et al. Investigating the effect of particle shape on the charging process in melter gasifiers in COREX[J]. Powder Technology, 2019, 351:305-313. doi: 10.1016/j.powtec.2019.04.040

    [27]

    徐少兵, 许海法. 熔融还原炼铁技术发展情况和未来的思考[J]. 中国冶金, 2016, 26(10):33-39.XU S B, XU H F. Development of melting reduction iron making technology and future thinking[J]. China Metallurgy, 2016, 26(10):33-39.

    XU S B, XU H F. Development of melting reduction iron making technology and future thinking[J]. China Metallurgy, 2016, 26(10):33-39.

    [28]

    曹朝真, 孟玉杰, 梅丛华, 等. HIsmelt熔融还原工艺工业化最新进展[A]//第十一届中国钢铁年会论文集[C]. 北京: 中国金属学会, 2017, 238-244.CAO C Z, MENG Y J, MEI C H, et al. Latest progress in industrialization of HIsmelt process[A]// Proceedings of the 11th China Iron and steel annual conference[C]. Beijing: China Metal Society, 2017, 238-244.

    CAO C Z, MENG Y J, MEI C H, et al. Latest progress in industrialization of HIsmelt process[A]// Proceedings of the 11th China Iron and steel annual conference[C]. Beijing: China Metal Society, 2017, 238-244.

    [29]

    郈亚丽, 王华, 卿山. 钛铁矿和高磷铁矿混合矿氧气顶吹熔融还原炼铁的工艺条件[J]. 过程工程学报, 2011, 11(6):1024-1029.HOU Y L, WANG H, QING S. Smelting conditions of reduction ironmaking from ilmenite mixed with high phosphorus iron ore by top-blown oxygen[J]. The Chinese Journal of Process Engineering, 2011, 11(6):1024-1029.

    HOU Y L, WANG H, QING S. Smelting conditions of reduction ironmaking from ilmenite mixed with high phosphorus iron ore by top-blown oxygen[J]. The Chinese Journal of Process Engineering, 2011, 11(6):1024-1029.

    [30]

    高洋, 贵永亮, 宋春燕, 等. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10.GAO Y, GUI Y L, SONG C Y, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    GAO Y, GUI Y L, SONG C Y, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.

    [31]

    印万忠, 徐东, 杨耀辉, 等. 承德某钒钛磁铁矿尾矿资源化利用技术研究[J]. 矿产综合利用, 2020(6):37-42.YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    [32]

    张立恒, 高子先, 汤卫东, 等. w(TiO2)对高铬型钒钛磁铁矿烧结矿冶金性能的影响[J]. 东北大学学报(自然科学版), 2020, 41(11):1667-1672.ZHANG L H, GAO Z X, TANG W D, et al. Effect of TiO2 content on metallurgy performance of high-chromium vanadium-titanium magnetite sinter[J]. Journal of Northeastern University(Natural Science), 2020, 41(11):1667-1672. doi: 10.12068/j.issn.1005-3026.2020.11.023

    ZHANG L H, GAO Z X, TANG W D, et al. Effect of TiO2 content on metallurgy performance of high-chromium vanadium-titanium magnetite sinter[J]. Journal of Northeastern University(Natural Science), 2020, 41(11):1667-1672. doi: 10.12068/j.issn.1005-3026.2020.11.023

    [33]

    严照照, 张淑会, 董晓旭, 等. 高炉渣的化学成分对其微观结构影响的研究现状[J]. 矿产综合利用, 2019(1):22-27.YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005

    YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005

    [34]

    李林. HIsmelt炼铁工艺的基础研究[J]. 北京: 北京科技大学, 2019.LI L. Basic research on HIsmelt ironmaking process[J]. Beijing: Beijing University of Science and Technology, 2019.

    LI L. Basic research on HIsmelt ironmaking process[J]. Beijing: Beijing University of Science and Technology, 2019.

    [35]

    范国锋, 卿山, 王华, 等. 高磷铁矿直接熔融还原动力学研究[J]. 昆明理工大学学报(自然科学版), 2012, 37(5):17-23.FAN G F, QING S, WANG H, et al. Kinetic research for direct smelting reduction of hgh-phosphorus iron ore[J]. Journal of Kunming University of Science and Technology ( Natural Science Edition), 2012, 37(5):17-23.

    FAN G F, QING S, WANG H, et al. Kinetic research for direct smelting reduction of hgh-phosphorus iron ore[J]. Journal of Kunming University of Science and Technology ( Natural Science Edition), 2012, 37(5):17-23.

    [36]

    赵丽树. CaO-SiO2-Al2O3-MgO-FetO渣系热力学性能的研究[D]. 沈阳: 东北大学, 2012.ZHAO L S. Study on thermodynamic properties of CaO-SiO2-Al2O3-MgO-FetO slag[D]. Shenyang: Northeastern University, 2012.

    ZHAO L S. Study on thermodynamic properties of CaO-SiO2-Al2O3-MgO-FetO slag[D]. Shenyang: Northeastern University, 2012.

    [37]

    张建良, 徐润生, 刘征建, 等. 一种基于HIsmelt熔融还原炉的锌回收方法[P]. 中国: CN111647704, 2020.ZHANG J L, XU R S, LIU Z J, et al. A zinc recovery method based on HIsmelt smelting reduction furnace[P]. China: CN111647704, 2020.

    ZHANG J L, XU R S, LIU Z J, et al. A zinc recovery method based on HIsmelt smelting reduction furnace[P]. China: CN111647704, 2020.

  • 加载中
计量
  • 文章访问数:  1255
  • PDF下载数:  133
  • 施引文献:  0
出版历程
收稿日期:  2022-01-17
刊出日期:  2024-06-25

目录