Research on Environmental Remediation of Uranium Mines in Southern China: A Review
-
摘要:
这是一篇矿山环境领域的文章。我国已发现和开采的铀矿大多位于湘赣粤,随着生态红线的划定和人民群众对生态环境问题日益重视,铀矿山环境修复越发显得重要。本文简要介绍了中国南方铀矿山开采形式,系统分析了铀矿山生产过程对环境产生的影响,重点介绍了物理修复措施、化学修复措施、生物修复措施原理和应用,总结归纳了相应的优缺点,对未来矿山修复发展前景进行了展望。指出下一步应该关注的重点是,铀矿及其相关设施退役前的环境检测,全面做好矿山生产全过程相关环境数据采集和记录。切实关注铀矿山废水处理处置,增加研究投入,借鉴国外先进技术方法,运用综合修复技术更加高效、安全、快速修复受污染环境。将铀矿山的修复和乡村治理结合起来,发展旅游业,增加当地居民发展动力和收入水平。
Abstract:This is an article in the field of mining environment. Most of the uranium mines discovered and mined in my country are located in Hunan, Jiangxi, and Guangdong. With the delineation of the ecological red line and the increasing attention of the people to ecological and environmental issues, environmental restoration of uranium mines becomes more and more important. This article briefly introduces the mining methods of uranium mines in southern China, systematically analyzes the impact of the production process of uranium mines on the environment, focuses on the principles and applications of physical, chemical, and biological remediation measures, summarizes the corresponding advantages and disadvantages, and prospects the future development of mine restoration. It was pointed out that the next step should be focused on environmental testing before the decommissioning of uranium mines and related facilities, and comprehensive environmental data collection and recording of the entire production process of the mine. Close attention should be paid to the treatment and disposal of wastewater from uranium mines, increase research investment, learn from foreign advanced technology and methods, and use comprehensive repair technology to repair the polluted environment more efficiently, safely and quickly. The restoration of uranium mines would be combined with rural governance, develop tourism, and increase the development motivation and income levels of local residents.
-
Key words:
- Mining environment /
- Radioactive waste /
- Soil remediation /
- Water environment remediation /
- Uranium mine
-
-
图 1 不同修复技术价格成本[22]
Figure 1.
表 1 我国部分铀矿山露天采场222Rn析出率及γ辐射吸收剂量值[2]
Table 1. 222Rn precipitation rate and γradiation absorbed dose value in open pits of some uranium mines in China
省份
测量部位222Rn析出率平均值/(Bq·m-2·s-1) γ辐射吸收剂量率平均值/10-8(Gy/h) 测量平均值 矿区背景值 测量平均值 矿区背景值 江西 露天采场 0.476 ~ 1.460 0.010 ~ 0.020 35.800 ~ 120.000 7.400 ~ 7.900 露天采场 1.350 ~ 5.180 0.020 ~ 0.080 94.000 ~ 408.000 10.900 ~ 13.300 广东 露天采场 1.720 0.070 ~ 0.116 118.000 22.600 露天采场 1.780~ 5.180 0.070 ~ 0.110 146.300 ~ 1076.300 28.500 表 2 江西某铀矿山不同废水中有害物质质量浓度/(μg/L)[3]
Table 2. Mass concentration of harmful substances in different wastewater from uranium mine in Jiangxi
取样位置 放射性元素 其他重金属元素 U Th Cd Mn Pb Cr Zn 露天采场 304.0000~2889.0000 0.0640~3.2200 0.3650~3.7400 2.4700~33.7000 0.9570~4.2300 1.9700~3.2900 7.4700~11.9000 矿石堆 136.0000~21845.0000 0.0990~159.0000 0.2700~21.5000 218.0000~9431.0000 0.9670~4.6200 1.7900~4.0900 14.9000~206.0000 坑道水 41.9000~45.7000 0.0160~1.5200 0.2940~0.3760 1.2300~43.1000 0.0071~0.1770 0.8840~1.4000 2.5500~3.7200 矿区未污
染地下水0.3090~0.3860 0.0004~0.0230 0.0130~0.9030 0.9540~3.5400 0.3680~1.3200 2.9900~8.0860 9.7300~23.6000 表 3 铀矿石、尾矿介质中放射性核素及有害化学物质的含量[25]
Table 3. Contents of radionuclides and harmful chemical substances in uranium ore and tailings media
名称 废石 尾矿(粗沙) 尾矿(细泥) 一般岩石 铀/(mg/g) 5.00~210.00 72.00~650.00 170.00~740.00 0.10~4.50 镭/(kBq/kg) 0.25~12.36 5.77~24.10 11.50~48.10 0.18~1.41 钚/(kBq/kg) — 11.10~14.80 55.50~66.60 — 总α/(kBq/kg) 4.19~25.90 15.50~52.90 74.00~92.50 1.29~2.17 SO4/% 2.48 0.24 15.90 — NO3/% — 0.70 0.70 0.35~0.75 Mn/% — 0.12 1.90 <0.03 Fe/% — 1.83 3.18 — F/% — 0.23 1.27 — Cl/(g/t) — 0.28 0.88 — “—”表示未检出 表 4 贫铀化学土壤提取方法选择[22]
Table 4. Selection of chemical soil extraction method for depleted uranium
表 5 铀污染植物修复应用实验 [51]
Table 5. Application test list of uranium polluted phytoremediation
年份 地区 修复场址 植株 修复技术 效果 1997 美国俄亥俄州 废弃铀加工厂(示范工厂) 向日葵 根基过滤 24 h内清除了95%的U[52] 1999 美国马里兰州 靶场土壤(可行性实验) — 植物提取 植物平均吸收764 mg/Kg, 土壤浓度47 mg/Kg[53] 2001 捷克 铀矿区(可行性实验) 芦苇、向日葵 植物提取 有近一半初始量的放射性物质转移到向日葵、芦苇中[54] 2002 捷克 铀矿区(示范工厂) 亚麻 植物固定 修复效果不是很理想,但获得了相关的农业技术参数[55] 2008 中国若尔盖县 铀矿废石堆(植被修复实验) 黑麦草、老芒麦、披碱草、紫羊芽、白三叶、高原红柳与当地野生杂草种子混播 植物固定 基本达到了原生植物的覆盖度[56] 2008 中国衡阳 退役铀矿库(综合处理方案) 美洲商陆 植物提取 采用以美洲商陆、铀尾矿渣、森林表层土壤、猪粪、硅酸钠相结合的综合处理方案,解决了现有铀尾矿渣在自然条件下释放重金属铀造成危害环境的难题[57] “—”表示未选择植株 -
[1] CHEN S, XING W, DU X. Forecast of the demand and supply plan of China’s uranium resources till 2030[J]. International Journal of Green Energy, 2017, 14(7):638-649. doi: 10.1080/15435075.2017.1313741
[2] 郑伟. 铀矿山露天采场废墟对环境的影响及退役治理技术探讨[J]. 铀矿冶, 2003, 22(4):183-187.ZHENG W. Discussion on environmental impact and decommissioning disposal techniques of opencast stope ruins at uranium mines[J]. Uranium Mining and Metallurgy, 2003, 22(4):183-187.
ZHENG W. Discussion on environmental impact and decommissioning disposal techniques of opencast stope ruins at uranium mines[J]. Uranium Mining and Metallurgy, 2003, 22(4):183-187.
[3] 张展适, 李满根, 杨亚新. 赣、粤、湘地区部分硬岩型铀矿山辐射环境污染及治理现状[J]. 铀矿冶, 2007, 26(4):191-196.ZHANG Z S, LI M G, YANG Y X. Radiation contamination andtreatment of some hard-rock-type uranium mines in Gan, Yue and Xiang areas[J]. Uranium Mining and Metallurgy, 2007, 26(4):191-196.
ZHANG Z S, LI M G, YANG Y X. Radiation contamination andtreatment of some hard-rock-type uranium mines in Gan, Yue and Xiang areas[J]. Uranium Mining and Metallurgy, 2007, 26(4):191-196.
[4] 张骞, 夏彧, 伍皓, 等. 云南煤系铀资源潜力分析与典型矿床铀赋存状态研究[J]. 矿产综合利用, 2021(5): 106-112.ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021
ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021
[5] ZHOU Z, YANG Z, SUN Z, et al. Multidimensional pollution and potential ecological and health risk assessments of radionuclides and metals in the surface soils of a uranium mine in East China[J]. Journal of Soils and Sediments, 2020, 20(2):775-791. doi: 10.1007/s11368-019-02428-x
[6] GUETTAF H, BECIS A, FERHAT K, et al. Concentration–purification of uranium from an acid leaching solution[J]. Physics Procedia, 2009, 2(3):765-771. doi: 10.1016/j.phpro.2009.11.023
[7] BHARGAVA S K, RAM R, POWNCEBY M, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151:10-24. doi: 10.1016/j.hydromet.2014.10.015
[8] LOTTERING M J, LORENZEN L, PHALA N S, et al. Mineralogy and uranium leaching response of low grade South African ores[J]. Minerals Engineering, 2008, 21(1):16-22. doi: 10.1016/j.mineng.2007.06.006
[9] 王廷健, 韩俊磊. 铀矿开采技术综述与展望[J]. 江西化工, 2019(4):1-4.WANG T J, HAN J L. Review and prospect of uranium mining technology[J]. Jiangxi Chemical Industry, 2019(4):1-4.
WANG T J, HAN J L. Review and prospect of uranium mining technology[J]. Jiangxi Chemical Industry, 2019(4):1-4.
[10] FARJANA S H, HUDA N, MAHMUD M A P, et al. Comparative life-cycle assessment of uranium extraction processes[J]. Journal of Cleaner Production, 2018, 202:666-683. doi: 10.1016/j.jclepro.2018.08.105
[11] SREENIVAS T, RAJAN K C. Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process[J]. Separation and Purification Technology, 2013, 112:54-60. doi: 10.1016/j.seppur.2013.03.050
[12] QUINN J E, SEDGER D S, BRENNAN A T, et al. Recovery of uranium from carbonate solutions using Lewatit TP 107 resin[J]. Hydrometallurgy, 2020, 194:105360. doi: 10.1016/j.hydromet.2020.105360
[13] VANCE R. Uranium 2014: resources, production and demand[J]. NEA News, 2014, 32(1/2):26.
[14] SINHAR R K, KAKODKAR A. Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor[J]. Nuclear Engineering and Design, 2006, 236(7-8):683-700. doi: 10.1016/j.nucengdes.2005.09.026
[15] SREENIVAS T, CHAKRAVARTTY J K. Alkaline processing of uranium ores of Indian origin[J]. Transactions of the Indian Institute of Metals, 2016, 69(1):3-14. doi: 10.1007/s12666-015-0548-2
[16] HERRIOTT T M, CROELEY J L, SCHMITZ M D, et al. Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA[J]. Geology, 2019, 47(11):1044-1048. doi: 10.1130/G46312.1
[17] WRONKIEWICZ D J, BUCK E C. Uranium mineralogy and the geologic disposal of spent nuclear fuel[J]. Uranium, 2018, 10:475-498.
[18] SUZUKI Y, SUKO T. Geomicrobiological factors that control uranium mobility in the environment: Update on recent advances in the bioremediation of uranium-contaminated sites[J]. Journal of Mineralogical and Petrological Sciences, 2006: 0611210003-0611210003.
[19] BARGAR J R, WIALIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Sciences, 2013, 110(12):4506-4511. doi: 10.1073/pnas.1219198110
[20] ABDEL-SABOUR M F. Remediation and bioremediation of uranium contaminated soils[J]. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2007, 6:2009-2023.
[21] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2):95-122.
[22] GAVRILESCU M, PAVEL L V, CRETESCU I. Characterization and remediation of soils contaminated with uranium[J]. Journal of Hazardous Materials, 2009, 163(2-3):475-510. doi: 10.1016/j.jhazmat.2008.07.103
[23] Lottermoser B G, Ashley P M. Physical dispersion of radioactive mine waste at the rehabilitated Radium Hill uranium mine site, South Australia[J]. Australian Journal of Earth Sciences, 2006, 53(3):485-499. doi: 10.1080/08120090600632383
[24] Lottermoser B, Ashley P. Assessment of rehabilitated uranium mine sites, Australia[M]//Uranium, Mining and Hydrogeology. Springer, Berlin, Heidelberg, 2008: 335-340.
[25] 潘英杰, 李玉成, 薛建新, 等. 我国铀矿冶设施退役治理现状及对策[J]. 辐射防护, 2009, 29(3):167-171+198.PAN Y J, LI Y C, XUE J X, et al. Status and countermeasures for decommissioning of uranium mine and mill facilities in china[J]. Radiation Protection, 2009, 29(3):167-171+198.
PAN Y J, LI Y C, XUE J X, et al. Status and countermeasures for decommissioning of uranium mine and mill facilities in china[J]. Radiation Protection, 2009, 29(3):167-171+198.
[26] CAMPBELL K M, GALLEGOS T J, LANDA E R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation[J]. Applied Geochemistry, 2015, 57:206-235. doi: 10.1016/j.apgeochem.2014.07.022
[27] Waggitt P W. Uranium mine rehabilitation: the story of the South Alligator Valley intervention[J]. Journal of Environmental Radioactivity, 2004, 76(1-2):51-66. doi: 10.1016/j.jenvrad.2004.03.018
[28] ZHOU P, GU B. Extraction of oxidized and reduced forms of uranium from contaminated soils: Effects of carbonate concentration and pH[J]. Environmental Science & Technology, 2005, 39(12):4435-4440.
[29] CHOU K C. Application of phenomenological theory to chemical metallurgy[J]. ISIJ International, 2018, 58(5):785-791. doi: 10.2355/isijinternational.ISIJINT-2018-120
[30] LLOYD J R, LOVLEY D R. Microbial detoxification of metals and radionuclides[J]. Current Opinion in Biotechnology, 2001, 12(3):248-253. doi: 10.1016/S0958-1669(00)00207-X
[31] MASON C F V, LU N, TURNEY W R J R, et al. A complete remediation system for uranium-contaminated soils: application to a uranium-contaminated site at Los Alamos National Laboratory[J]. Remediation Journal, 1998, 8(3):113-126. doi: 10.1002/rem.3440080310
[32] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182:247-268. doi: 10.1016/j.gexplo.2016.11.021
[33] KULPA J P, HUGHES J E. Deployment of chemical extraction soil treatment on uranium contaminated soil[J]. WM, 2001, 1:54-5.
[34] MASON C F V, TURNEY W, Thomson B M, et al. Carbonate leaching of uranium from contaminated soils[J]. Environmental Science & Technology, 1997, 31(10):2707-2711.
[35] PHILLIPS E J P, LANDA E R, LOVLEY D R. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U (VI) reduction[J]. Journal of Industrial Microbiology and Biotechnology, 1995, 14(3-4):203-207. doi: 10.1007/BF01569928
[36] FRANCIS A J, DODGE C J. Remediation of soils and wastes contaminated with uranium and toxic metals[J]. Environmental Science & Technology, 1998, 32(24):3993-3998.
[37] NIRDOSH I. Leaching of uranium and 226ra from low‐level radioactive waste from port hope, ontario[J]. The Canadian Journal of Chemical Engineering, 1999, 77(3):508-514. doi: 10.1002/cjce.5450770311
[38] WALL J D, KRUMHOLZ L R. Uranium reduction[J]. Annu. Rev. Microbiol., 2006, 60:149-166. doi: 10.1146/annurev.micro.59.030804.121357
[39] BERTSCH P M, HUNTER D B, SUTTON S R, et al. In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy[J]. Environmental Science & Technology, 1994, 28(5):980-984.
[40] BOONSTRA J, BUISMAN C J N. Biotechnology for sustainable hydrometallurgy[J]. Hydrometallurgy, 2003, 2:1105-1119.
[41] WAN J, TOKUNAGA T K, KIM Y, et al. Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment[J]. Environmental Science & Technology, 2008, 42(20):7573-7579.
[42] IKEDA A, HENNIG C, TSUSHIMA S, et al. Comparative study of uranyl (VI) and-(V) carbonato complexes in an aqueous solution[J]. Inorganic Chemistry, 2007, 46(10):4212-4219. doi: 10.1021/ic070051y
[43] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820):579-579. doi: 10.1038/35054664
[44] KRAMER U, COTTER-HOWELLS J D, CHARNOCK J M, et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature, 1996, 379(6566):635-638. doi: 10.1038/379635a0
[45] YE H B, YE X, et al. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels[J]. Journal of Integrative Plant Biology, 2003, 45(9):1030-1036.
[46] SELVAKUMARK R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: A review[J]. Journal of Environmental Radioactivity, 2018, 192:592-603. doi: 10.1016/j.jenvrad.2018.02.018
[47] FINNERANR K T, ANDERSON R T, NEVIN K P, et al. Potential for bioremediation of uranium-contaminated aquifers with microbial U (VI) reduction[J]. Soil and Sediment Contamination: An International Journal, 2002, 11(3):339-357. doi: 10.1080/20025891106781
[48] WU W M, CARLEY J, LUO J, et al. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen[J]. Environmental Science & Technology, 2007, 41(16):5716-5723.
[49] DING F, CHEN H, ZHANG S, et al. Effect of chelating agents on Reactive Green 19 decolorization through Fe0-activated persulfate oxidation process[J]. Journal of Environmental Management, 2017, 200:325-334. doi: 10.1016/j.jenvman.2017.05.089
[50] 鲁雪梅, 周艳欣. 螯合剂在土壤重金属污染修复中的应用研究[J]. 低碳世界, 2017(22):35-36.LU X M, ZHOU Y X. Application of chelating agents in remediation of soil heavy metal pollution[J]. Low Carbon world, 2017(22):35-36. doi: 10.3969/j.issn.2095-2066.2017.22.023
LU X M, ZHOU Y X. Application of chelating agents in remediation of soil heavy metal pollution[J]. Low Carbon world, 2017(22):35-36. doi: 10.3969/j.issn.2095-2066.2017.22.023
[51] 黄德娟, 朱业安, 余月. 铀污染环境治理中的植物修复研究[J]. 铀矿冶, 202, 31(4): 202-206.HUANG D J, ZHU Y A, YU Y, et al. Study on phytoremediation in the uranium contaminated environment[J]. Uranium Mining and Metallurgy, 202, 31(4): 202-206.
HUANG D J, ZHU Y A, YU Y, et al. Study on phytoremediation in the uranium contaminated environment[J]. Uranium Mining and Metallurgy, 202, 31(4): 202-206.
[52] 唐秀欢, 潘孝兵, 万俊生. 放射性污染植物修复技术田间试验及前景分析[J]. 环境科学与技术, 2008, 31(4):63-67.TANG X H, PAN X B, WAN J S. Field experiments of radiophytoremediation and its application prospct[J]. Environmental Science & Technology, 2008, 31(4):63-67. doi: 10.3969/j.issn.1003-6504.2008.04.018
TANG X H, PAN X B, WAN J S. Field experiments of radiophytoremediation and its application prospct[J]. Environmental Science & Technology, 2008, 31(4):63-67. doi: 10.3969/j.issn.1003-6504.2008.04.018
[53] DUSHENKOV S, VASUDEV D, KAPULNIKN Y, et al. Removal of uranium from water using terrestrial plants[J]. Environmental Science & Technology, 1997, 31(12):3468-3474.
[54] LI J, ZHANG Y. Remediation technology for the uranium contaminated environment: a review[J]. Procedia Environmental Sciences, 2012, 13:1609-1615. doi: 10.1016/j.proenv.2012.01.153
[55] SHARMA S, SINGH B, MANCHANDA V K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water[J]. Environmental Science and Pollution Research, 2015, 22(2):946-962. doi: 10.1007/s11356-014-3635-8
[56] Hu Y, Yu Z, Fang X, et al. Influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau[J]. International Journal of Environmental Research and Public Health, 2020, 17(12):4288. doi: 10.3390/ijerph17124288
[57] 周书葵, 田林玉, 荣丽杉, 等. 3种固定剂联合修复铀尾矿污染土壤[J]. 精细化工, 2020, 37(10):2105-2111.ZHOU S K, TIAN L Y, RONG L S, et al. Remediation of uranium contaminated soil with three combinated[J]. Fine Chemicals, 2020, 37(10):2105-2111.
ZHOU S K, TIAN L Y, RONG L S, et al. Remediation of uranium contaminated soil with three combinated[J]. Fine Chemicals, 2020, 37(10):2105-2111.
-