Automatic Process Mineralogy Based on Gold Ore Core
-
摘要:
这是一篇工艺矿物学领域的论文。山东某石英脉型金矿,金品位2.51 g/t。为对该矿床的进一步开发及选矿工艺研究,对该矿物开展了工艺矿物学研究。本次研究涉及的技术方法包括多元素化学分析、化学物相分析、光学显微镜鉴定、X射线衍射(XRD)分析、矿物自动定量分析(BPMA)、扫描电镜-能谱仪(SEM-EDS)分析等。结果表明:(1)矿石中金矿物绝大多数为银金矿,偶见微量的金银矿和自然金;(2)矿石中金矿物与黄铁矿等硫化物的嵌布关系十分密切,黄铁矿是金矿物的最主要的载体矿物,矿石中单体及裸露金的占有率较高,为58.96%,黄铁矿等硫化物中包裹金的占有率为39.84%,脉石矿物中包裹金的占有率为1.20%;(3)矿石中金矿物粒度分布不均匀,整体粒度较细,矿石中可见粒度+0.020 mm的金矿物颗粒,其占有率为22.08%,-0.020 mm的金矿物占有率为77.92%,其中-0.005 mm的微粒金矿物占有率为24.83%,-0.001 mm的亚微米级微细粒金矿物占有率为0.35%。
Abstract:This is an article in the field of process mineralogy. A quartz vein type gold deposit in Shandong has a gold grade of 2.51 g/t. In order to further develop the deposit and study the beneficiation process, the process mineralogy of the mineral was carried out. The technical methods involved in this study include multi-element chemical analysis, chemical phase analysis, optical microscope identification, X-ray diffraction (XRD) analysis, automatic quantitative mineral analysis (BPMA), scanning electron microscope energy spectrometer (SEM-EDS) analysis, etc. The results show that: (1) most of the gold minerals in the ore are silver-gold, and a small amounts of gold, silver and natural gold are occasionally found; (2) The embedding relationship between gold minerals and sulfides such as pyrite in the ore is very close. Pyrite is the main carrier mineral of gold minerals, and the proportion of single and exposed gold in the ore is high, which is 58.96%. The proportion of gold encapsulated in sulfides such as pyrite is 39.84%, and the proportion of gold encapsulated in gangue minerals is 1.20%; (3) The particle size distribution of gold minerals in the ore is uneven, and the overall particle size is relatively fine. Gold particles with a particle size larger than 0.020 mm can be seen in the ore, with an occupancy rate of 22.08%. Gold minerals with a particle size less than 0.020 mm have an occupancy rate of 77.92%, with an occupancy rate of 24.83% for micro gold minerals with a particle size less than 0.005 mm and 0.35% for sub micron sized gold minerals with a particle size less than 0.001 mm.
-
Key words:
- Core gold /
- Pyrite /
- Silver gold deposit /
- Process mineralogy /
- Distribution characteristics /
- Occurrence state
-
-
表 1 矿石试样化学多元素分析结果/%
Table 1. Chemical multi-element analysis results of ore samples
Au* Ag* Cu Pb Zn Fe S WO3 Sb As Co 2.51 7.4 0.016 0.049 0.034 5.76 4.79 <0.01 <0.01 <0.001 <0.005 SiO2 TiO2 Al2O3 MnO MgO CaO Na2O K2O P C 69.74 0.145 10.54 0.13 0.66 0.73 0.090 3.79 0.042 0.53 *单位为g/t 表 2 矿石中金的化学物相分析结果
Table 2. Chemical phase analysis results of gold in ores
名称 裸露金 硫化物包裹金 脉石矿物包裹金 合计 含 量/(g/t) 1.48 1.00 0.03 2.51 分布率/% 58.96 39.84 1.20 100.00 表 3 矿石的矿物组成及相对含量
Table 3. Mineral composition and relative content of ores
序号 矿物名称 矿物量/% 序号 矿物名称 矿物量/% 1 黄铁矿 11.92 13 磷灰石 0.22 2 磁铁矿 1.94 14 石榴石 0.17 3 黄铜矿 0.06 15 绿帘石 0.11 4 方铅矿 0.05 16 金红石 0.09 5 闪锌矿、铁闪锌矿 0.03 17 绿泥石 0.07 6 石英 54.10 18 普通辉石 0.07 7 绢云母 19.48 19 黑云母 0.05 8 钾长石 8.57 20 天青石 0.02 9 铁白云石 1.33 21 独居石 0.01 10 菱铁矿 0.81 22 方解石 0.01 11 斜长石 0.54 23 重晶石 0.01 12 角闪石 0.27 24 其他 0.07 表 4 矿石中金矿物的产出状态/%
Table 4. Output status of gold minerals in ores
金与载体
矿物之间
的关系金矿物嵌布特征 占有率 合计 包裹金 被黄铁矿包裹 64.25 64.79 被闪锌矿包裹 0.46 被黄铜矿包裹 0.01 被绢云母包裹 0.07 裂隙金 嵌布于黄铁矿裂隙/孔隙中 14.70 14.70 粒间金 嵌布于黄铁矿与黄铜矿、方铅矿、闪锌矿等硫化物粒间 1.82 6.40 嵌布于黄铁矿与石英粒间 2.49 嵌布于石英与菱铁矿粒间 1.39 嵌布于黄铁矿与菱铁矿粒间 0.70 连生金 与黄铁矿连生 10.95 10.99 与黄铜矿连生 0.04 单体金 — 3.12 3.12 注:金矿物的嵌布特征和产出状态研究是对-2 mm样品分析完成的,故存在一部分连生金和单体金。 表 5 矿石中金矿物的粒度统计结果
Table 5. Particle size statistics of gold minerals in ores
粒级/μm 金矿物 包裹金 粒间金 裂隙金 含量/% 累计/% 含量/% 累计/% 含量/% 累计/% 含量/% 累计/% +20 22.08 22.08 34.07 34.07 -20+15 10.06 32.14 15.52 49.59 -15+10 19.89 52.03 25.92 75.51 -10+5 23.14 75.17 8.88 84.39 62.95 62.95 49.89 49.89 -5+4 9.96 85.13 7.17 91.56 15.21 78.16 10.51 60.40 -4+3 6.79 91.92 3.86 95.42 13.68 91.84 14.63 75.03 -3+2 5.78 97.70 3.07 98.49 5.89 97.73 17.58 92.61 -2+1 1.96 99.66 1.27 99.76 1.51 99.24 6.42 99.02 -1 0.34 100.00 0.24 100.00 0.76 100.00 0.98 100.00 注:金矿物*包括矿石中银金矿、金银矿、自然金等所有的金矿物。 表 6 金在不同矿物中的分布率
Table 6. Distribution rate of gold in different minerals
矿物名称 金矿物含量
比值/%矿物中金的平均
含量/%金分布率/
%银金矿 93.81 65.70 94.80 金银矿 4.67 45.05 3.24 自然金 1.52 83.91 1.96 -
[1] 梁晓, 胡瑞彪, 冯泽平. 广东某复杂难选难浸金矿工艺矿物学[J]. 矿产综合利用, 2019(6):65-68.LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68. doi: 10.3969/j.issn.1000-6532.2019.06.014
LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68. doi: 10.3969/j.issn.1000-6532.2019.06.014
[2] 周利华, 陈晓芳, 苏妤芸. 山西某斑岩型金矿工艺矿物学特性[J]. 矿产综合利用, 2020(3):143-147.ZHOU L H, CHEN X F, SU Y Y. Technological and mineralogical characteristics of a porphyry gold deposit in Shanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2020(3):143-147. doi: 10.3969/j.issn.1000-6532.2020.03.024
ZHOU L H, CHEN X F, SU Y Y. Technological and mineralogical characteristics of a porphyry gold deposit in Shanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2020(3):143-147. doi: 10.3969/j.issn.1000-6532.2020.03.024
[3] 刘坤, 王婷霞, 李健民, 等. 天水某金矿工艺矿物学及选矿试验研究[J]. 矿产综合利用, 2020(5):101-104.LIU K, WANG T X, LI J M, et al. Process mineralogy and mineral processing of a gold mine in Tianshui[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-104. doi: 10.3969/j.issn.1000-6532.2020.05.014
LIU K, WANG T X, LI J M, et al. Process mineralogy and mineral processing of a gold mine in Tianshui[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-104. doi: 10.3969/j.issn.1000-6532.2020.05.014
[4] 王越, 王婧, 李潇雨, 等. 川西某金矿工艺矿物学研究及对选矿工艺的影响[J]. 矿产综合利用, 2021(4):206-210.WANG Y, WANG J, LI X Y, et al. Process mineralogy study of the gold deposit in western Sichuan area and its influence on mineral Processing technology[J]. Multipurpose Utilization of Mineral Resources, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034
WANG Y, WANG J, LI X Y, et al. Process mineralogy study of the gold deposit in western Sichuan area and its influence on mineral Processing technology[J]. Multipurpose Utilization of Mineral Resources, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034
[5] 刘璐, 王守敬, 卞孝东. 灵宝某金矿石工艺矿物学研究[J]. 金属矿山, 2017(11):112-115.LIU L, WANG S J, BIAN X D. Process mineralogy of a gold ore from Lingbao[J]. Metal Mining, 2017(11):112-115. doi: 10.3969/j.issn.1001-1250.2017.11.023
LIU L, WANG S J, BIAN X D. Process mineralogy of a gold ore from Lingbao[J]. Metal Mining, 2017(11):112-115. doi: 10.3969/j.issn.1001-1250.2017.11.023
[6] 王川. 工艺矿物学在新疆某铜矿浮选尾矿降尾工艺试验中的应用研究[J]. 有色金属(选矿部分), 2021(4):13-17.WANG C. Application of process mineralogy in the tailing reduction process test of flotation tailings of a copper mine in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2021(4):13-17.
WANG C. Application of process mineralogy in the tailing reduction process test of flotation tailings of a copper mine in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2021(4):13-17.
[7] 吴师金, 刘庭忠. 新疆某白钨矿物质组分特征及赋存状态研究[J]. 有色金属(选矿部分), 2020(6):8-13+18.WU S J, LIU T Z. Characterization of the material components and the state of the scheelite ore in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2020(6):8-13+18.
WU S J, LIU T Z. Characterization of the material components and the state of the scheelite ore in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2020(6):8-13+18.
[8] 孙传尧. 选矿工程师手册: 第1册[M]. 北京: 冶金工业出版社, 2015.SUN C Y. Handbook for mineral processing engineers: book 1[M]. Beijing: Metallurgical Industry Press, 2015.
SUN C Y. Handbook for mineral processing engineers: book 1[M]. Beijing: Metallurgical Industry Press, 2015.
[9] 肖仪武. 某铜锡多金属矿尾矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(1):1-5.XIAO Y W. Research on process mineralogy of tailings of a copper-tin polymetallic mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1):1-5.
XIAO Y W. Research on process mineralogy of tailings of a copper-tin polymetallic mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1):1-5.
[10] 叶小璐. 工艺矿物学在选厂流程优化中的作用[J]. 有色金属(选矿部分), 2020(4):13-16+33.YE X L. The role of process mineralogy in the optimization of beneficiation plant flow[J]. Nonferrous Metals (Mineral Processing Section), 2020(4):13-16+33.
YE X L. The role of process mineralogy in the optimization of beneficiation plant flow[J]. Nonferrous Metals (Mineral Processing Section), 2020(4):13-16+33.
-