胆碱类低共熔溶剂与氧化锌吸附分子动力学模拟

张晋霞, 杨超, 高淑玲, 牛福生, 信晓飞. 胆碱类低共熔溶剂与氧化锌吸附分子动力学模拟[J]. 矿产综合利用, 2024, 45(3): 179-186, 192. doi: 10.3969/j.issn.1000-6532.2024.03.028
引用本文: 张晋霞, 杨超, 高淑玲, 牛福生, 信晓飞. 胆碱类低共熔溶剂与氧化锌吸附分子动力学模拟[J]. 矿产综合利用, 2024, 45(3): 179-186, 192. doi: 10.3969/j.issn.1000-6532.2024.03.028
ZHANG Jinxia, YANG Chao, GAO Shuling, NIU Fusheng, XIN Xiaofei. First Principles Calculation and Analysis of Adsorption of Choline Deep with Zinc Oxide[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 179-186, 192. doi: 10.3969/j.issn.1000-6532.2024.03.028
Citation: ZHANG Jinxia, YANG Chao, GAO Shuling, NIU Fusheng, XIN Xiaofei. First Principles Calculation and Analysis of Adsorption of Choline Deep with Zinc Oxide[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 179-186, 192. doi: 10.3969/j.issn.1000-6532.2024.03.028

胆碱类低共熔溶剂与氧化锌吸附分子动力学模拟

  • 基金项目: 国家自然科学基金项目(51904106);河北省自然科学基金资助项目(E2018209085);唐山市基础创新团队项目(19130207C)
详细信息
    作者简介: 张晋霞(1979-),女,博士,教授,硕士生导师,研究方向为有色金属冶金
    通讯作者: 杨超(1995-),男,硕士研究生,研究方向为有色金属冶金
  • 中图分类号: TD952

First Principles Calculation and Analysis of Adsorption of Choline Deep with Zinc Oxide

More Information
  • 这是一篇冶金工程领域的论文。为了更好实现含锌尘泥中氧化锌的浸出,采用基于密度泛函理论的Materials Studio 软件模拟优化氧化锌晶体结构以及三种胆碱类低共熔溶剂结构,并对两者相互吸附模型进行计算。计算结果表明:ZnO(001)面为完全解理面,在费米能级附近最高占据态向左发生偏移,且最高占据态的波峰增加,峰值升高,在最高占据态中O的p轨道以及Zn的d轨道活性较大,为ZnO(001)面反应活性位点。对三种胆碱类低共熔溶剂优化发现氯化胆碱与三种不同氢键供体形成以氯原子为中心的多重分子间氢键。运用Forcite模块对低共熔溶剂与氧化锌吸附模型计算结果表明,氧化锌与三种胆碱类低共熔溶剂相互作用强弱为Chcl-MA>Chcl-Urea>Chcl-Eg。径向分布函数得出丙二酸使得氯化胆碱中的Cl更容易与Zn发生化学吸附,三种氢键供体中与Zn形成化学键的氧原子官能团活泼性为C=O、N-O、C-O,由此说明丙二酸中的C=O使得Chcl-MA与ZnO结合更稳定。通过实验验证发现Chcl-MA在浸出温度为70 ℃、液固比为10∶1、浸出时间1 h条件下可将氧化锌单矿物几乎完全浸出,浸出效果远远大于Chcl-Urea、Chcl-Eg两种药剂,从而证明了分子模拟的准确性,为胆碱类低共熔溶剂浸出含锌尘泥提供了理论指导。

  • 加载中
  • 图 1  氧化锌完全解理面优化构型

    Figure 1. 

    图 2  氧化锌能带对比 (a:原胞b:完全解理面)

    Figure 2. 

    图 3  氧化锌态密度对比 (a:原胞b:完全解理面)

    Figure 3. 

    图 4  胆碱类低共熔溶剂优化模型

    Figure 4. 

    图 5  胆碱类低共熔溶剂声子光谱

    Figure 5. 

    图 6  低共熔溶剂与ZnO(001)吸附构型搭建

    Figure 6. 

    图 7  低共熔溶剂与ZnO(001)吸附模型径向分布

    Figure 7. 

    图 8  不同浸出条件氧化锌的浸出率

    Figure 8. 

    表 1  ZnO交换相关能、截断能参数计算

    Table 1.  Calculation of exchange correlation energy and truncation energy parameters of ZnO

    晶胞参数/ ×10-10m 晶胞参数误差/% 带隙/eV 总能/eV
    a c a c
    交换相关能 LDA(CA-PZ) 3.191 5.158 1.78 0.922 0.794 -4300.24
    GGA(PBE) 3.289 5.309 1.23 1.98 0.733 -4294.54
    GGA(RPBE) 3.319 5.358 2.15 2.92 0.836 -4296.55
    GGA(PW91) 3.288 5.291 1.20 1.63 0.719 -4299.28
    截断能 350 3.191 5.158 1.78 0.922 0.794 -4300.24
    400 3.289 5.309 1.23 1.98 0.733 -4294.54
    450 3.319 5.358 2.15 2.92 0.836 -4296.55
    500 3.287 5.298 1.14 1.75 0.735 -4299.95
    550 3.332 5.343 2.52 2.61 0.762 -4298.32
    下载: 导出CSV

    表 2  氧化锌常见表面能/(J/m2)

    Table 2.  Common surface energy of zinc oxide

    晶面001011111101110
    表面能0.81773.92753.92712.08522.4053
    下载: 导出CSV

    表 3  原子层数对表面能的影响

    Table 3.  Effect of atomic layer number on surface energy

    完全解理面 原子层数 原子数 表面能/(J/m2)
    ZnO(001)
    2 8 1.5438
    3 12 1.5908
    4 16 1.6079
    5 20 1.6088
    6 24 1.6093
    下载: 导出CSV

    表 4  前线分子轨道能量值/eV

    Table 4.  Frontline molecular orbital energy

    HOMO LUMO △E1 △E2
    ZnO(001) -0.1625 -0.0221
    Chcl-Eg -0.1828 0.0342 0.1607 0.1283
    Chcl-Urea -0.1851 -0.7605 0.1630 0.09230
    Chcl-MA -0.2077 -0.1064 0.1856 0.0564
    其中ΔE1=|HOMODES-LUMOZnO(001) | 、△E2=|HOMOZnO(001)-LUMODES|
    下载: 导出CSV

    表 5  低共熔溶剂与ZnO(001)面相互作用能(Ha)

    Table 5.  Interaction energy between deep eutectic solvents and ZnO(001) adsorption configuration

    DESZnO(001)Energy△E
    Chcl-Eg92.2259-253287.6632-253366.6631-171.2258
    Chcl-Urea-84.1064-253287.6632-253722.4735-350.7039
    Chcl-MA-35.4970-253287.6632-254162.7930-839.6328
    下载: 导出CSV
  • [1]

    Mehmet Kul, KürşadOskay, Mehmet ŞİMŞİR, et al. Optimization of selective leaching of Zn from electric arc furnace steelmaking dust using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8):2753-2762. doi: 10.1016/S1003-6326(15)63900-0

    [2]

    谢泽强, 郭宇峰, 陈凤, 等. 钢铁厂含锌粉尘综合利用现状及展望[J]. 烧结球团, 2016, 41(5): 53-55, 61.XIE Z Q, GUO Y F, CHEN F, et al. Research status and prospect of comprehensive utilization of zinc-bearing dust in iron and steel plants[J]. Sintering and Pelletizing. 2016, 41(5): 53-55, 61.

    XIE Z Q, GUO Y F, CHEN F, et al. Research status and prospect of comprehensive utilization of zinc-bearing dust in iron and steel plants[J]. Sintering and Pelletizing. 2016, 41(5): 53-55, 61.

    [3]

    张晋霞, 牛福生, 徐之帅. 钢铁工业冶金含铁尘泥铁、碳、锌分选技术研究[J]. 矿山机械, 2014, 42(6):97-102.ZHANG J X, NIU F S, XU Z S. Research on separation of iron, carbon and zinc in metallurgical dust slime from iron and steel industry[J]. Mining machinery, 2014, 42(6):97-102.

    ZHANG J X, NIU F S, XU Z S. Research on separation of iron, carbon and zinc in metallurgical dust slime from iron and steel industry[J]. Mining machinery, 2014, 42(6):97-102.

    [4]

    何环宇, 陈振红, 崔一芳, 等. 含锌冶金尘泥还原烟气沉积特性[J]. 钢铁, 2015, 50,(12):80-84.HE H Y, CHEN Z H, CUI Y F, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust[J]. Iron and steel, 2015, 50,(12):80-84.

    HE H Y, CHEN Z H, CUI Y F, et al. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust[J]. Iron and steel, 2015, 50,(12):80-84.

    [5]

    王飞, 张建良, 毛瑞, 等. 含铁尘泥自还原团块固结机理及强度劣化[J]. 中南大学学报(自然科学版), 2016, 47(2):367-372.WANG F, ZHANG J L, MAO R, et al. Bonding mechanism and strength deterioration of self-reducing briquettes made from iron-bearing dust and sludge[J]. Journal of Central South University(Science and Technology), 2016, 47(2):367-372.

    WANG F, ZHANG J L, MAO R, et al. Bonding mechanism and strength deterioration of self-reducing briquettes made from iron-bearing dust and sludge[J]. Journal of Central South University(Science and Technology), 2016, 47(2):367-372.

    [6]

    蒋武锋, 马腾飞, 郝素菊, 等. 利用钢渣余热还原含锌粉尘可行性的探讨[J]. 矿产综合利用, 2019(6):140-144.JIANG W F, MA T F, HAO S J, et al. Discussion on feasibility of reducing zinc-containing dust by residual heat of steel slag[J]. Multipurpose Utilization of Mineral Resources, 2019(6):140-144. doi: 10.3969/j.issn.1000-6532.2019.06.030

    JIANG W F, MA T F, HAO S J, et al. Discussion on feasibility of reducing zinc-containing dust by residual heat of steel slag[J]. Multipurpose Utilization of Mineral Resources, 2019(6):140-144. doi: 10.3969/j.issn.1000-6532.2019.06.030

    [7]

    马爱元, 郑雪梅, 李松, 等. 含锌钢铁冶金渣尘处理技术现状[J]. 矿产综合利用, 2020(4):1-7.MA A Y, ZHENG X M, LI S, et al. Present situation of zinc metallurgical slags and dusts treatment technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7. doi: 10.3969/j.issn.1000-6532.2020.04.001

    MA A Y, ZHENG X M, LI S, et al. Present situation of zinc metallurgical slags and dusts treatment technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7. doi: 10.3969/j.issn.1000-6532.2020.04.001

    [8]

    Wu Zhaojin, Huang Wei, Cui Keke, et al. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol[J]. Journal of Hazardous Materials, 2014, 278(8):91-99.

    [9]

    张晋霞, 冯洪均, 王龙, 等. 含锌冶金尘泥氨浸溶蚀实验研究[J]. 矿产综合利用, 2021(1):124-129.ZHANG J X FENG H J, WANG L, et al. Study on treating zinc-bearing dust by Ammonia leaching process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021

    ZHANG J X FENG H J, WANG L, et al. Study on treating zinc-bearing dust by Ammonia leaching process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021

    [10]

    马爱元, 郑雪梅, 李松, 等. 响应曲面优化NH3-(NH4)3AC-H2O 体系浸出冶金废渣提锌工艺研究[J]. 矿产综合利用, 2021(1):186-192.MA A Y, ZHENG X M, LI S, et al. Study on zinc extraction process of NH3-(NH4)3AC-H2O system by response surface optimization[J]. Multipurpose Utilization of Mineral Resources, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

    MA A Y, ZHENG X M, LI S, et al. Study on zinc extraction process of NH3-(NH4)3AC-H2O system by response surface optimization[J]. Multipurpose Utilization of Mineral Resources, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

    [11]

    谭鑫, 何发钰, 谢宇. 钨锰矿(010)表面电子结构及性质第一性原理计算[J]. 金属矿山, 2015(6):52-58.TAN X, HE F Y, XIE Y. Structural and electronic properties of MnWO4( 010) surface studied by first-principles calculation[J]. Metal Mine, 2015(6):52-58. doi: 10.3969/j.issn.1001-1250.2015.06.012

    TAN X, HE F Y, XIE Y. Structural and electronic properties of MnWO4( 010) surface studied by first-principles calculation[J]. Metal Mine, 2015(6):52-58. doi: 10.3969/j.issn.1001-1250.2015.06.012

    [12]

    Yang Z Q, Bai X H, Zheng W W, et al. Electronic properties of bare doped (Tio2)3clustera density functionaltheory investigation[J]. Molecular Physics, 2015, 32(6):962-970.

    [13]

    张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.ZHANG H T. Molecular dynamics simulation of adsorption of combined collectors of dodecylamine and oleic acid on surface of lepidolite[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    ZHANG H T. Molecular dynamics simulation of adsorption of combined collectors of dodecylamine and oleic acid on surface of lepidolite[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  573
  • PDF下载数:  78
  • 施引文献:  0
出版历程
收稿日期:  2022-07-13
刊出日期:  2024-06-25

目录