甘肃某含砷高硫金矿浮选实验

陈艳波, 李光胜, 朱幸福, 许青. 甘肃某含砷高硫金矿浮选实验[J]. 矿产综合利用, 2024, 45(3): 206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032
引用本文: 陈艳波, 李光胜, 朱幸福, 许青. 甘肃某含砷高硫金矿浮选实验[J]. 矿产综合利用, 2024, 45(3): 206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032
CHEN Yanbo, LI Guangsheng, ZHU Xingfu, XU Qing. Flotation of an Arsenic Bearing High Sulfur Gold Mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032
Citation: CHEN Yanbo, LI Guangsheng, ZHU Xingfu, XU Qing. Flotation of an Arsenic Bearing High Sulfur Gold Mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 206-210. doi: 10.3969/j.issn.1000-6532.2024.03.032

甘肃某含砷高硫金矿浮选实验

详细信息
    作者简介: 陈艳波(1986-),男,硕士,研究方向为金矿选矿技术研究
  • 中图分类号: TD953

Flotation of an Arsenic Bearing High Sulfur Gold Mine in Gansu Province

  • 这是一篇矿物加工工程领域的论文。某含砷高硫金矿中金矿物与黄铁矿、毒砂共生关系密切,在实际生产过程中精矿金回收率不理想。为提高精矿金回收率,同时兼顾精矿金品位,针对该矿物特点,通过系统条件实验、浮选时间实验和精选实验得到了浮选工艺参数和流程,继而开展开路实验和闭路实验,获得了较好的浮选指标。为进一步提升浮选指标,对浮选中矿进行再磨再浮实验,并对中矿再磨浮选尾矿进行氰化浸出实验,最终得到金选冶总回收率91.94%的满意指标。

  • 加载中
  • 图 1  开路实验工艺流程

    Figure 1. 

    图 2  中矿再磨工艺流程

    Figure 2. 

    图 3  中矿再磨实验结果

    Figure 3. 

    图 4  精尾和扫精混合再磨浮选实验工艺流程

    Figure 4. 

    图 5  扫精磨矿细度实验工艺流程

    Figure 5. 

    图 6  扫精磨矿细度实验结果

    Figure 6. 

    图 7  再选精矿浮选实验工艺流程

    Figure 7. 

    表 1  化学有效元素分析结果/%

    Table 1.  Chemical active element analysis results

    Au*Ag*CuPbZnFeSAsSiO2Al2O3MgOCaONa2OK2O
    6.642.620.0130.0270.01514.473.691.6518.991.120.8023.450.030.36
    *单位为 g/t
    下载: 导出CSV

    表 2  样品中金矿物解离特征

    Table 2.  Dissociation characteristics of gold minerals in samples

    解离度
    X
    单体
    X=100%
    75%≤X<100% 50%≤X<75% 25%≤X<50% 0<X<25% 包裹
    X=0
    合计
    含量/% 4.60 10.07 57.97 2.54 0.89 23.93 100.00
    下载: 导出CSV

    表 3  样品中主要金矿物嵌布程度统计

    Table 3.  Statistics of embedding degree of main gold minerals in the samples

    矿物 单体/% 共生体/% 合计/%
    黄铁矿 黄铁矿和毒砂 毒砂 毒砂和菱铁矿 菱铁矿
    含量/% 4.60 74.32 7.76 4.49 6.82 2.01 100.00
    下载: 导出CSV

    表 4  主要矿物粒度分布情况

    Table 4.  Particle size distribution of main minerals

    粒级/μm黄铁矿毒砂
    含量/%正累积/%含量/%正累积/%
    +1044.794.794.034.03
    -104+7410.7315.528.1112.14
    -74+3842.0457.5636.3748.51
    -38+2024.6082.1630.3078.81
    -20+155.9888.147.4286.23
    -15+105.0393.175.2591.48
    -10+55.0198.186.1997.67
    -51.821002.33100
    平均粒径47.4643.57
    下载: 导出CSV

    表 5  主要矿物嵌布特征

    Table 5.  Distribution characteristics of main minerals

    矿物名称单体/%共生体/%合计/%
    金属硫化物其他脉石矿物
    黄铁矿14.086.8579.07100.00
    毒砂19.473.1877.35100.00
    下载: 导出CSV

    表 6  开路实验结果

    Table 6.  Test results of open circuit

    样品名称产率/%金品位/(g/t)金回收率/%
    精矿11.3142.7972.99
    精尾9.3811.6616.50
    扫Ⅰ精2.338.402.95
    扫Ⅱ精1.594.120.99
    尾矿75.390.586.57
    合计100.006.63100.00
    下载: 导出CSV

    表 7  闭路实验结果

    Table 7.  Results of closed circuit test

    产物名称作业产率/%金品位/(g/t)金回收率/%
    精矿14.6337.1882.17
    尾矿85.371.3817.83
    合计100.006.62100.00
    下载: 导出CSV

    表 8  精尾和扫精混合再磨浮选实验结果

    Table 8.  Flotation test results of cleaner tailings and scavenger concentrate mixed Regrinding

    样品名称产率/%金品位/(g/t)金回收率/%
    精矿15.2735.4881.71
    中矿浮精2.7514.846.15
    合计(综合精矿)18.0232.3487.86
    中矿浮尾7.854.455.30
    尾矿74.130.616.84
    合计(综合尾矿)81.980.9812.14
    总计100.006.63100.00
    下载: 导出CSV

    表 9  再选精矿浮选实验结果

    Table 9.  Flotation test results of Scavenger concentrate regrinding

    样品名称产率/%金品位/(g/t)金回收率/%
    粗精18.3932.0388.57
    再选精矿1.3612.012.45
    合计(综合精矿)19.7530.6091.02
    再选尾矿6.512.751.92
    尾矿73.760.586.43
    合计(综合尾矿)80.270.768.98
    总计100.006.65100.00
    下载: 导出CSV
  • [1]

    王刚强, 叶正国, 孙业友. 安徽某高硫含砷硫金矿硫砷分离试验[J]. 现代矿业, 2019, 35(12):127-129+153.WANG G Q, YE Z G, SUN Y Y. Sulfur-arsenic separation test of a high-sulfur arsenic-bearing sulfur-gold mine in Anhui[J]. Modern Mining, 2019, 35(12):127-129+153. doi: 10.3969/j.issn.1674-6082.2019.12.036

    WANG G Q, YE Z G, SUN Y Y. Sulfur-arsenic separation test of a high-sulfur arsenic-bearing sulfur-gold mine in Anhui[J]. Modern Mining, 2019, 35(12):127-129+153. doi: 10.3969/j.issn.1674-6082.2019.12.036

    [2]

    皇甫明柱, 盛 娜, 邓久帅. 安徽某高硫金矿选矿实验[J]. 现代矿业, 2016(9):82-85.HUANGFU M Z, SHENG N, DENG J S. Beneficiation test of a high sulfur gold deposit in Anhui[J]. Modern Mining, 2016(9):82-85. doi: 10.3969/j.issn.1674-6082.2016.09.023

    HUANGFU M Z, SHENG N, DENG J S. Beneficiation test of a high sulfur gold deposit in Anhui[J]. Modern Mining, 2016(9):82-85. doi: 10.3969/j.issn.1674-6082.2016.09.023

    [3]

    张晓民, 李恒, 李越, 等. 碳质物对高含碳金矿浮选影响的试验研究[J]. 有色金属工程, 2020, 10(2):74-81.ZHANG X M, LI H, LI Y, et al. Experimental study on the effect of carbonaceous material on the flotation of highly carbonaceous gold ores[J]. Nonferrous Metal Engineering, 2020, 10(2):74-81. doi: 10.3969/j.issn.2095-1744.2020.02.012

    ZHANG X M, LI H, LI Y, et al. Experimental study on the effect of carbonaceous material on the flotation of highly carbonaceous gold ores[J]. Nonferrous Metal Engineering, 2020, 10(2):74-81. doi: 10.3969/j.issn.2095-1744.2020.02.012

    [4]

    明平田, 李飞. 某微细粒蚀变岩型金矿高效浮选新工艺研究[J]. 矿产综合利用, 2019(4):73-78.MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015

    MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015

    [5]

    杨松林, 程东江, 王仁朋. 山东招远银金多金属矿床金矿物特征研究[J]. 矿产综合利用, 2021(6):195-197.YANG S L, CHENG D J, WANG R P. Characteristics of gold minerals in Zhaoyuan silver gold polymetallic deposit, Shandong Province[J]. Multipurpose Utilization of Mineral Resources, 2021(6):195-197.

    YANG S L, CHENG D J, WANG R P. Characteristics of gold minerals in Zhaoyuan silver gold polymetallic deposit, Shandong Province[J]. Multipurpose Utilization of Mineral Resources, 2021(6):195-197.

    [6]

    赵 杰, 赵志强, 罗思岗, 等. 某含砷金矿浮选提金降砷实验研究[J]. 矿冶工程, 2021(4):63-65.ZHAO J, ZHAO Z Q, LUO S G, et al. Experimental study on flotation gold extraction and arsenic reduction of an arsenic bearing gold mine[J]. Mining and Metallurgy Engineering, 2021(4):63-65.

    ZHAO J, ZHAO Z Q, LUO S G, et al. Experimental study on flotation gold extraction and arsenic reduction of an arsenic bearing gold mine[J]. Mining and Metallurgy Engineering, 2021(4):63-65.

    [7]

    黄长峰, 曹玉川. 湖南某金矿浮选工艺研究[J]. 矿冶工程, 2020(10):65-67.HUANG C F, CAO Y C. Study on flotation process of a gold mine in Hunan[J]. Mining and Metallurgy Engineering, 2020(10):65-67. doi: 10.3969/j.issn.0253-6099.2020.05.016

    HUANG C F, CAO Y C. Study on flotation process of a gold mine in Hunan[J]. Mining and Metallurgy Engineering, 2020(10):65-67. doi: 10.3969/j.issn.0253-6099.2020.05.016

  • 加载中

(7)

(9)

计量
  • 文章访问数:  548
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2022-07-29
刊出日期:  2024-06-25

目录