滑石型钼矿选别工艺和药剂研究进展

陈桃, 简胜, 谢贤, 童雄, 张英, 吕向文. 滑石型钼矿选别工艺和药剂研究进展[J]. 矿产综合利用, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011
引用本文: 陈桃, 简胜, 谢贤, 童雄, 张英, 吕向文. 滑石型钼矿选别工艺和药剂研究进展[J]. 矿产综合利用, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011
CHEN Tao, JIAN Sheng, XIE Xian, TONG Xiong, ZHANG Ying, LYU Xiangwen. Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011
Citation: CHEN Tao, JIAN Sheng, XIE Xian, TONG Xiong, ZHANG Ying, LYU Xiangwen. Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011

滑石型钼矿选别工艺和药剂研究进展

  • 基金项目: 国家自然科学基金(51764025)
详细信息
    作者简介: 陈桃(1996-),男,硕士研究生,主要从事矿石分选理论与工艺研究工作
    通讯作者: 谢贤(1981-),男,博士,副教授,主要从事矿物综合利用研究工作
  • 中图分类号: TD952

Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore

More Information
  • 这是一篇矿物加工工程领域的论文。钼具有多项良好的物理化学性质,在多个领域得到广泛应用。钼主要来源于辉钼矿,但易选钼矿资源经长期开发而日益减少,如今滑石型等难选钼矿逐渐成为研究的焦点。滑石与辉钼矿的分离是滑石型钼矿分选的难点,两者具有相似的表面结构与天然可浮性,分离十分困难。文章概述了目前滑石型钼矿的选矿工艺与药剂等方面的研究进展,提出加强对滑石型钼矿选择性磨矿与有机大分子药剂的研究开发,以及加深药剂与矿物表面的作用机理和对原矿工艺矿物学的研究是今后分选滑石型钼矿的重要方向。

  • 加载中
  • 表 1  辉钼矿和滑石的物理性质[15]

    Table 1.  Physical properties of molybdenite and talc[15]

    比重导电性/(S/cm)介电常数
    辉钼矿4.6~5.010-5~10>81
    滑石2.58~2.8310-15~10-129.41
    下载: 导出CSV
  • [1]

    张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009

    ZHANG H X, LI H, LIANG J L, et al. Status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009

    [2]

    Anilkumar K R, Parveen A, Badiger G R, et al. Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline[J]. Physica B Condensed Matter, 2009(12-13):1664-1667.

    [3]

    杨若瑜, 张建国, 彭远伦, 等. 云南某铜矿铜钼分离浮选工艺优化研究及工业应用[J]. 矿产综合利用, 2021(5):182-185.YANG R Y, ZHANG J G, PENG Y L, et al. Optimization research and industrial application of copper and molybdenum separation flotation process in a copper mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(5):182-185. doi: 10.3969/j.issn.1000-6532.2021.05.030

    YANG R Y, ZHANG J G, PENG Y L, et al. Optimization research and industrial application of copper and molybdenum separation flotation process in a copper mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(5):182-185. doi: 10.3969/j.issn.1000-6532.2021.05.030

    [4]

    王国彬, 蓝卓越, 赵清平, 等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用, 2021(3):140-148.WANG G B, LAN Z Y, ZHAO Q P, et al. Research status of comprehensive recovery of valuable metals in molybdenum tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    WANG G B, LAN Z Y, ZHAO Q P, et al. Research status of comprehensive recovery of valuable metals in molybdenum tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    [5]

    张成强, 李洪潮, 张颖新, 等. 我国复杂难选钼矿资源选矿技术进展[J]. 中国矿业, 2009(10):64-66,86.ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in the beneficiation technology of complex refractory molybdenum ore resources in my country[J]. China Mining Industry, 2009(10):64-66,86. doi: 10.3969/j.issn.1004-4051.2009.10.021

    ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in the beneficiation technology of complex refractory molybdenum ore resources in my country[J]. China Mining Industry, 2009(10):64-66,86. doi: 10.3969/j.issn.1004-4051.2009.10.021

    [6]

    张亮, 杨卉芃, 冯安生. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16.ZHANG L, YANG H P, FENG A S. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003

    ZHANG L, YANG H P, FENG A S. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003

    [7]

    黄凡, 王登红, 陈毓川, 等. 中国钼矿中辉钼矿的稀土元素地球化学及其应用[J]. 中国地质, 2013(1):287-301.HUANG F, WANG D H, CHEN Y C, et al. Rare earth element geochemistry and application of molybdenite in Chinese molybdenum deposits[J]. Chinese Geology, 2013(1):287-301. doi: 10.3969/j.issn.1000-3657.2013.01.019

    HUANG F, WANG D H, CHEN Y C, et al. Rare earth element geochemistry and application of molybdenite in Chinese molybdenum deposits[J]. Chinese Geology, 2013(1):287-301. doi: 10.3969/j.issn.1000-3657.2013.01.019

    [8]

    陈建华, 冯其明. 钼矿的选矿现状[J]. 矿产保护与利用, 1994(6):26-28.CHEN J H, FENG Q M. Current status of molybdenum ore beneficiation[J]. Mineral Resources Conservation and Utilization, 1994(6):26-28.

    CHEN J H, FENG Q M. Current status of molybdenum ore beneficiation[J]. Mineral Resources Conservation and Utilization, 1994(6):26-28.

    [9]

    魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3):31-36.WEI Z L, LI Y B. The crystal plane anisotropy of molybdenite and its influence mechanism on flotation[J]. Mineral Resources Conservation and Utilization, 2018(3):31-36.

    WEI Z L, LI Y B. The crystal plane anisotropy of molybdenite and its influence mechanism on flotation[J]. Mineral Resources Conservation and Utilization, 2018(3):31-36.

    [10]

    刘佳, 李解, 李保卫, 等. 伊春辉钼矿浮选工艺优化试验研究[J]. 矿产综合利用, 2017(6):50-56.LIU J, LI J, LI B W, et al. Experimental study on optimization of flotation process of Yichun molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):50-56. doi: 10.3969/j.issn.1000-6532.2017.06.011

    LIU J, LI J, LI B W, et al. Experimental study on optimization of flotation process of Yichun molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):50-56. doi: 10.3969/j.issn.1000-6532.2017.06.011

    [11]

    Smit F J, Bhasin A K. Relationship of petroleum hydrocarbon characteristics and molybdenite flotation[J]. International Journal of Mineral Processing, 1985(1-2):19-40.

    [12]

    赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石, 绿泥石, 滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Overview of the floatability and inhibition methods of serpentine, chlorite and talc[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002

    ZHAO Y Q, HUANG B X, LIU L, et al. Overview of the floatability and inhibition methods of serpentine, chlorite and talc[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002

    [13]

    Beattie D A, Le H, Kaggwa G B, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006(4):238-249.

    [14]

    Beattie D A, Le H, Kaggwa G B, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2006(6-8):598-608.

    [15]

    Rosenholtz J L, Smith D T. The dielectric constant of mineral powders[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1936(2):115-120.

    [16]

    Mathieu G I, RW B. Getting the talc out of molybdenite ores[J]. 1974(6): 75-77.

    [17]

    Yuan D, Cadien K, Liu Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143:105923. doi: 10.1016/j.mineng.2019.105923

    [18]

    Jiang X K, Ban H, Neathery J K, et al. New approach for removing talc for upgrading molybdenite ores[C]//1999 SME Annual Meeting: Mining in a New Era. 1999: 126.

    [19]

    彭团儿, 郭珍旭, 张艳娇. 斜板分级机在某难选滑石型钼矿的应用研究[J]. 矿产保护与利用, 2013(3):31-34.PENG T E, GUO Z X, ZHANG Y J. Application of inclined plate classifier in a refractory talc-type molybdenum mine[J]. Mineral Resources Conservation and Utilization, 2013(3):31-34. doi: 10.3969/j.issn.1001-0076.2013.03.008

    PENG T E, GUO Z X, ZHANG Y J. Application of inclined plate classifier in a refractory talc-type molybdenum mine[J]. Mineral Resources Conservation and Utilization, 2013(3):31-34. doi: 10.3969/j.issn.1001-0076.2013.03.008

    [20]

    赵平. 栾川滑石型辉钼矿选矿新工艺、新药剂工业试验[A]. 中国地质科学院“九五”科技成果汇编[C]. 中国地质学会, 2001: 1.ZHAO P. Luanchuan talc-type molybdenite beneficiation new technology and new chemical industrial test[A]. Compilation of scientific and technological achievements of the Chinese Academy of Geological Sciences during the Ninth Five-Year Plan period[C]. Chinese Geological Society, 2001: 1.

    ZHAO P. Luanchuan talc-type molybdenite beneficiation new technology and new chemical industrial test[A]. Compilation of scientific and technological achievements of the Chinese Academy of Geological Sciences during the Ninth Five-Year Plan period[C]. Chinese Geological Society, 2001: 1.

    [21]

    张小云, 黎铉海. 辉钼矿与滑石的分选试验[J]. 湖南有色金属, 1997(1):15-16.ZHANG X Y, LI X H. Separation test of molybdenite and talc[J]. Hunan Nonferrous Metals, 1997(1):15-16.

    ZHANG X Y, LI X H. Separation test of molybdenite and talc[J]. Hunan Nonferrous Metals, 1997(1):15-16.

    [22]

    董燧珍. 含滑石钼矿的选别工艺试验研究[J]. 矿产综合利用, 2006(1):7-12.DONG S Z. Experimental study on the separation technology of talc-bearing molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2006(1):7-12. doi: 10.3969/j.issn.1000-6532.2006.01.002

    DONG S Z. Experimental study on the separation technology of talc-bearing molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2006(1):7-12. doi: 10.3969/j.issn.1000-6532.2006.01.002

    [23]

    张文钲. 钼选矿学技术发展现状与展望[J]. 中国钼业, 2011(1):1-6.ZHANG W Z. The status quo and prospects of the development of molybdenum beneficiation technology[J]. China Molybdenum Industry, 2011(1):1-6. doi: 10.3969/j.issn.1006-2602.2011.01.001

    ZHANG W Z. The status quo and prospects of the development of molybdenum beneficiation technology[J]. China Molybdenum Industry, 2011(1):1-6. doi: 10.3969/j.issn.1006-2602.2011.01.001

    [24]

    俞国庆, 姚云芳. 肯尼柯特犹他铜矿铜-钼选矿厂[J]. 中国钼业, 1998(4):95-98.YU G Q, YAO Y F. Kennecott utah copper mine copper-molybdenum concentrator[J]. China Molybdenum Industry, 1998(4):95-98.

    YU G Q, YAO Y F. Kennecott utah copper mine copper-molybdenum concentrator[J]. China Molybdenum Industry, 1998(4):95-98.

    [25]

    孙大勇, 祁忠旭, 肖舜元, 等. 高滑石型难选钼矿选矿进展[J]. 现代矿业, 2019(3):114-117.SUN D Y, QI Z X, XIAO S Y, et al. Progress in beneficiation of high-talc refractory molybdenum ore[J]. Modern Mining, 2019(3):114-117. doi: 10.3969/j.issn.1674-6082.2019.03.032

    SUN D Y, QI Z X, XIAO S Y, et al. Progress in beneficiation of high-talc refractory molybdenum ore[J]. Modern Mining, 2019(3):114-117. doi: 10.3969/j.issn.1674-6082.2019.03.032

    [26]

    Tang X, Chen Y, Liu K, et al. Reverse flotation separation of talc from molybdenite without addition of depressant: Effect of surface oxidation by thermal pre-treatment[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 594:124671. doi: 10.1016/j.colsurfa.2020.124671

    [27]

    Huch R O, Valles P. Talc-molybdenite separation[J]. US, 1975.

    [28]

    Qin, Wenqing, Ma, et al. Depression mechanism of the zinc sulfate and sodium carbonate combined inhibitor on talc[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2016, 501:92-97. doi: 10.1016/j.colsurfa.2016.04.057

    [29]

    马晶, 张文钲, 李枢本. 钼矿选矿[M]. 冶金工业出版社, 2008.MA J, ZHANG W Z, LI S B. Beneficiation of molybdenum ore[M]. Metallurgical Industry Press, 2008.

    MA J, ZHANG W Z, LI S B. Beneficiation of molybdenum ore[M]. Metallurgical Industry Press, 2008.

    [30]

    Kelebek S, Yoruk S, Smith G W. Wetting behavior of molybdenite and talc in lignosulphonate/mibc solutions and their separation by flotation[J]. Separation Science & Technology, 2001(2):145-157.

    [31]

    Ma X, Pawlik M. The effect of lignosulfonates on the floatability of talc[J]. International Journal of Mineral Processing, 2007(1-2):19-27.

    [32]

    Fu Y, Zhu Z, Jin Y, et al. Improved depression of talc in chalcopyrite flotation using a novel depressant combination of calcium ions and sodium lignosulfonate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558:88-94.

    [33]

    Khraisheh M, Holland C, Creany C, et al. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths[J]. International Journal of Mineral Processing, 2005, 75(3-4):197-206. doi: 10.1016/j.minpro.2004.08.012

    [34]

    Krizova H, Wiener J, Development of carboxymethyl cellulose/ polyphenols gels for textile applications[J]. Autex Research Journal, 2013(2): 33-36.

    [35]

    齐超, 欧乐明, 邱章伟, 等. 不同种CMC对两种非极性矿物表面的抑制研究[J]. 有色金属科学与工程, 2015(6):88-94.QI C, OU L M, QIU Z W, et al. Study on the inhibition of different kinds of CMC on the surface of two non-polar minerals[J]. Nonferrous Metal Science and Engineering, 2015(6):88-94.

    QI C, OU L M, QIU Z W, et al. Study on the inhibition of different kinds of CMC on the surface of two non-polar minerals[J]. Nonferrous Metal Science and Engineering, 2015(6):88-94.

    [36]

    KUHN M C. Mthods for the recovery of molybdenum, US200800667112A1[P]. 2008-9-10.

    [37]

    龙良俊. 污泥腐殖酸特性及其改性后对重金属的吸附研究[D]. 重庆: 重庆大学, 2018.LONG L J. Humic acid characteristics of sludge and its adsorption of heavy metals after modification[D]. Chongqing: Chongqing University, 2018.

    LONG L J. Humic acid characteristics of sludge and its adsorption of heavy metals after modification[D]. Chongqing: Chongqing University, 2018.

    [38]

    陆宝树. 腐殖质化学-发生, 组成, 反应[J]. 土壤学进展, 1985(1):56.LU B S. Humus Chemistry-Generation, Composition, Reaction[J]. Progress in Soil Science, 1985(1):56.

    LU B S. Humus Chemistry-Generation, Composition, Reaction[J]. Progress in Soil Science, 1985(1):56.

    [39]

    YUAN D, XIE L, SHI X, et al. Selective flotation separation of molybdenite and talc by humic substances[J]. Minerals Engineering, 2017, 117:34-41.

    [40]

    J·王, 罗科华, 王荣生, 等. 古尔胶在固-液界面上的吸附机理[J]. 国外金属矿选矿, 2006(4):30-33.WANG J, LUO K H, WANG R S, et al. Adsorption mechanism of Gu'er gum at the solid-liquid interface[J]. Foreign Metallic Mineral Processing, 2006(4):30-33.

    WANG J, LUO K H, WANG R S, et al. Adsorption mechanism of Gu'er gum at the solid-liquid interface[J]. Foreign Metallic Mineral Processing, 2006(4):30-33.

    [41]

    P·G·肖特里奇, 向平, 肖力子. 多糖抑制剂的化学成份和分子量对滑石浮选的影响[J]. 国外金属矿选矿, 2002(8):29-32+22.P·G·Shortridge, XIANG P, XIAO L Z. The influence of the chemical composition and molecular weight of polysaccharide inhibitors on the flotation of talc[J]. Foreign Metallic Mineral Processing, 2002(8):29-32+22.

    P·G·Shortridge, XIANG P, XIAO L Z. The influence of the chemical composition and molecular weight of polysaccharide inhibitors on the flotation of talc[J]. Foreign Metallic Mineral Processing, 2002(8):29-32+22.

    [42]

    潘高产, 卢毅屏. CMC和古尔胶对滑石浮选的抑制作用研究[J]. 有色金属(选矿部分), 2013(2):74-78.PAN G C, LU Y P. Study on the inhibition of CMC and Gu'er gum on the flotation of talc[J]. Non-Ferrous Metals (Mineral Processing Part), 2013(2):74-78.

    PAN G C, LU Y P. Study on the inhibition of CMC and Gu'er gum on the flotation of talc[J]. Non-Ferrous Metals (Mineral Processing Part), 2013(2):74-78.

    [43]

    宋少云, 廖威. 葡聚糖的研究进展[J]. 中山大学学报(自然科学版), 2005(A2):229-232.SONG S Y, LIAO W. Research progress of dextran[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2005(A2):229-232. doi: 10.3321/j.issn:0529-6579.2005.z2.053

    SONG S Y, LIAO W. Research progress of dextran[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2005(A2):229-232. doi: 10.3321/j.issn:0529-6579.2005.z2.053

    [44]

    张其东, 袁致涛, 刘炯天, 等. 葡聚糖对辉钼矿与滑石浮选分离的影响[J]. 中国有色金属学报, 2016(4):884-890.ZHANG Q D, YUAN Z T, LIU J T, et al. The effect of dextran on the flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2016(4):884-890.

    ZHANG Q D, YUAN Z T, LIU J T, et al. The effect of dextran on the flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2016(4):884-890.

  • 加载中

(1)

计量
  • 文章访问数:  429
  • PDF下载数:  167
  • 施引文献:  0
出版历程
收稿日期:  2022-10-09
刊出日期:  2024-08-25

目录