Determination of Trace Au in Minerals by Bismuth Fire Assay with Enrichment-high Resolution Continuum Source Flame Atomic Absorption Spectrometry
-
摘要:
这是一篇分析测试领域的论文。铋试金作为一种高效分离富集矿石中痕量贵金属的绿色环保火试金方法,有效避免了铅试金有毒污染的问题。本篇采用低毒的Bi2O3作为Au元素的火试金捕集剂,在高温熔融过程中Bi2O3经试金配料中的还原剂面粉还原为Bi后,与样品中的Au形成Au2Bi合金,并采用Ag保护灰吹法使Au与Ag形成约1 mg的Ag合粒;对Ag合粒采用酸溶法将其加热溶解,使Au完全进入溶液。本实验以国家标准物质GBW 07205中Au元素含量为参考,对连续光源火焰原子吸收光谱仪的CCD检测器有效像素点进行了优化选择,综合其灵敏度和稳定性,选择7作为CCD检测器的有效像素点。在质量浓度0~20 μg/mL范围内与其对应吸光度运用二次方程最小二乘法拟合校准曲线,校准曲线拟合系数为0.999 8;特征浓度为0.069 97 μg/mL,方法检出限为0.012 7 μg/mL。按照选定实验方法及优化仪器参数下对国家标准物质中Au进行测定,测定值与标准值吻合良好,相对标准偏差(RSD,n=6)为2.23%~4.54%。将所建立的方法应用于实际矿石样品中Au的测试,加标回收率为92.6%~106%;相对标准偏差(n=6)为2.53%~4.70%,满足国家地质矿产行业标准DZ/T 0130—2006的要求。
-
关键词:
- 分析测试 /
- 铋试金 /
- Ag保护灰吹法 /
- Au /
- 连续光源火焰原子吸收光谱法
Abstract:This is an article in the field of analytical testing. As a green and environmentally friendly fire gold test method for efficient separation and enrichment of trace precious metals in ore, bismuth gold test effectively avoids the problem of toxic pollution of lead test gold. In this article, Bi2O3 with low toxicity is used as the fire test gold trap of Au element, and Bi2O3 is reduced to Bi by the reducing agent flour in the test ingredient during the high-temperature melting process, and Au2Bi alloy is formed with Au in the samples, and the Ag protective ash blowing method is used to make Au and Ag form about 1mg of Ag zygote. The Ag zygoteum is heated and dissolved by acid solution method to completely enter the solution of Au. In this test, the Au element content in the national standard material GBW 07205 was used as a reference, and the effective pixels of the CCD detector of the continuous light source flame atomic absorption spectrometer were optimized, and 7 were selected as the effective pixels of the CCD detector based on their sensitivity and stability. In the mass concentration range of 0~20 μg/mL, the corresponding absorbance was fitted by the quadratic equation least squares method, the fitting coefficient of the calibration curve was 0.999 8, the characteristic concentration was 0.069 97 μg/mL, and the detection limit of the method was 0.012 7 g/mL. According to the selected experimental method and optimized instrument parameters, Au in the national standard material was determined, and the measured value was in good agreement with the standard value, and the relative standard deviation (RSD, n=6) was 2.23%~4.54%. The established method was applied to the test of Au in actual ore samples, and the recovery rate of spiked was 92.6%~106%. The relative standard deviation (n=6) was 2.53%~4.70%, which met the requirements of the National Geological and Mineral Resources Industry Standard DZ/T 0130-2006.
-
-
表 1 HR-CS-AAS的工作参数
Table 1. Working parameters of HR-CS-AAS instrument
参数 设定值 参数 设定值 分析谱线波长/nm 242.795 0 燃烧头类型/ mm 100 积分模式 平均值 火焰类型 乙炔-空气 读数时间/s 3 燃气流量/(L/h) 45 有效像素/个 7 燃烧头高度/ mm 6 背景校正方式 迭代基线校正 检测器像素 200 表 2 不同像素点下Au元素含量的校准曲线参数
Table 2. Calibration curve parameters of Au element content at different pixels
像素点 Au测
定值/
(g/t)相关
系数R2斜率Abs/
(μg/mL)特征
浓度/
(μg/mL)标准
偏差1 13.25 0.999 7 0.017 92 0.243 20 0.106 2 3 13.51 0.999 7 0.048 09 0.090 65 0.109 7 5 13.72 0.999 8 0.062 87 0.069 35 0.101 9 7 13.69 0.999 8 0.066 01 0.066 05 0.102 4 9 13.61 0.999 8 0.066 21 0.065 85 0.107 6 11 13.54 0.999 8 0.066 25 0.065 81 0.104 6 表 3 国家标准物质中Au含量的测定结果
Table 3. Measurement results of Au content in national standard substances
标准样品 标准值
/(µg/g)测定平均值
/(µg/g)RSD
(n=6)/%GBW 07203 3.59±0.02 3.57 4.54 GBW 07204 7.16±0.03 7.17 3.68 GBW 07205 14.0±0.10 13.9 2.23 GBW 07206 19.4±0.10 19.3 3.60 表 4 实际矿石中Au的测定结果
Table 4. Measurement results of Au in actual ores
样品 测定值/
(μg/g)相对标准
偏差RSD(n=6)/%加标量/
(μg/g)测得总量/
(μg/g)回收
率/%1 0.86 4.70 1.00 1.83 97.0 2 1.77 4.14 2.00 3.80 102.0 3 3.65 3.28 5.00 8.63 99.6 4 10.07 2.53 5.00 14.70 92.6 5 4.25 3.14 5.00 9.26 100.0 6 15.82 2.78 10.00 26.40 106.0 7 6.76 4.33 5.00 11.90 103.0 8 10.67 3.02 10.00 20.53 98.6 9 17.34 2.91 10.00 27.02 96.8 10 2.09 3.49 2.00 4.03 97.0 -
[1] 陈永红, 孟宪伟, 王立臣. 2019—2020年中国金分析测定的进展[J]. 黄金, 2022, 43(1): 105-112.CHEN Y H, MENG X W , WANG L C. Progress of gold analysis and determination in China during 2019-2020[J]. Gold, 2022, 43(1): 105-112.
CHEN Y H, MENG X W , WANG L C. Progress of gold analysis and determination in China during 2019-2020[J]. Gold, 2022, 43(1): 105-112.
[2] 侯凯, 谢贤, 童雄, 等. 我国金矿床的工业类型及选矿研究方法[J]. 矿产综合利用, 2014(4):9-15+24.HOU K, XIE X, TONG X, et al. Review of the commercial types of gold deposits and their beneficiation methods at home[J]. Multipurpose Utilization of Mineral Resources, 2014(4):9-15+24. doi: 10.3969/j.issn.1000-6532.2014.04.003
HOU K, XIE X, TONG X, et al. Review of the commercial types of gold deposits and their beneficiation methods at home[J]. Multipurpose Utilization of Mineral Resources, 2014(4):9-15+24. doi: 10.3969/j.issn.1000-6532.2014.04.003
[3] 董守安. 现代贵金属分析[M]. 北京: 化学工业出版社, 2006.DONG S A. Modern precious metals analysis[M]. Beijing: Chemical Industry Press, 2006.
DONG S A. Modern precious metals analysis[M]. Beijing: Chemical Industry Press, 2006.
[4] 李跃光, 陈为亮. 贵金属元素分析中的分离富集技术应用进展[J]. 贵金属, 2012, 33(4):71-74.LI Y G, CHEN W L. Comments on technical progress of separation and concentration for precious metals elemental analysis[J]. Precious Metals, 2012, 33(4):71-74. doi: 10.3969/j.issn.1004-0676.2012.04.014
LI Y G, CHEN W L. Comments on technical progress of separation and concentration for precious metals elemental analysis[J]. Precious Metals, 2012, 33(4):71-74. doi: 10.3969/j.issn.1004-0676.2012.04.014
[5] 李邦民. 火试金技术的发展与应用[J]. 青海师范大学学报(自然科学版), 2012, 28(3):82-85.LI B M. The development and application of the fire assay method[J]. Journal of Qinghai Normal University (Natural Science Edition), 2012, 28(3):82-85
LI B M. The development and application of the fire assay method[J]. Journal of Qinghai Normal University (Natural Science Edition), 2012, 28(3):82-85
[6] 赵延庆. 聚氨酯泡沫塑料吸附-电感耦合等离子体质谱法测定地质化探样品中金[J]. 冶金分析, 2016, 36(7):34-38.ZHAO Y Q. Determination of gold in geochemical samples by inductively coupled plasma mas spectrometry with polyurethane foam plastic absorption[J]. Metallurgical Analysis, 2016, 36(7):34-38
ZHAO Y Q. Determination of gold in geochemical samples by inductively coupled plasma mas spectrometry with polyurethane foam plastic absorption[J]. Metallurgical Analysis, 2016, 36(7):34-38
[7] 倪文山, 孟亚兰, 姚明星, 等. 铅试金富集-塞曼石墨炉 原子吸收光谱法测定矿石样品中铂钯铑铱[J]. 冶金分析, 2010, 30(3):23-26.NI W S, MENG Y L, YAO M X, et al. Determination of platinum, palladium, rhodium and iridium in mineral samples by Zeeman graphite furnace atomic absorption spectrometry after the preconcentration with lead fire assaying[J]. Metallurgical Analysis, 2010, 30(3):23-26. doi: 10.3969/j.issn.1000-7571.2010.03.005
NI W S, MENG Y L, YAO M X, et al. Determination of platinum, palladium, rhodium and iridium in mineral samples by Zeeman graphite furnace atomic absorption spectrometry after the preconcentration with lead fire assaying[J]. Metallurgical Analysis, 2010, 30(3):23-26. doi: 10.3969/j.issn.1000-7571.2010.03.005
[8] 张帆, 王琳, 郭家凡, 等. 铋试金-二次灰吹-ICP-AES测定黑色岩中的铂、钯、金[J]. 贵金属, 2022, 43(2):69-75.ZHANG F, WANG L, GUO J F, et al. Determination of Pt, Pd and Au in black rock bybismuth assay - secondary ash blowing - ICP-AES[J]. Precious Metals, 2022, 43(2):69-75. doi: 10.3969/j.issn.1004-0676.2022.02.012
ZHANG F, WANG L, GUO J F, et al. Determination of Pt, Pd and Au in black rock bybismuth assay - secondary ash blowing - ICP-AES[J]. Precious Metals, 2022, 43(2):69-75. doi: 10.3969/j.issn.1004-0676.2022.02.012
[9] 孙启亮, 毛香菊, 郭晓瑞, 等. 铅试金富集-高分辨率连续光源石墨炉原子吸收光谱法测定地球化学样品中痕量金铂钯[J]. 冶金分析, 2021, 41(7):10-16.SUN Q L, MAO X J, GUO X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7):10-16
SUN Q L, MAO X J, GUO X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7):10-16
[10] 姚明星, 毛香菊, 郭晓瑞, 等. 银保护灰吹铅试金-高分辨率连续光源火焰原子吸收光谱法测定铁粉中痕量金[J]. 冶金分析, 2022, 42(8):48-54.YAO M X, MAO X J, GUO X R, et al. Determination of trace gold in iron powder by high resolution continuum source flame atomic absorption spectrometry with silver protection cupellation lead fire assay enrichment[J]. Metallurgical Analysis, 2022, 42(8):48-54.
YAO M X, MAO X J, GUO X R, et al. Determination of trace gold in iron powder by high resolution continuum source flame atomic absorption spectrometry with silver protection cupellation lead fire assay enrichment[J]. Metallurgical Analysis, 2022, 42(8):48-54.
[11] 李可及, 刘淑君, 邵坤. 铋锑试金测定硫化铜镍矿中钌铑钯铱铂[J]. 分析化学, 2014, 42(6):909-912.LI K J, LIU S J, SHAO K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):909-912.
LI K J, LIU S J, SHAO K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):909-912.
[12] 毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源 石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7):40-46.MAO X J, XIAO F, LIU L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7):40-46.
MAO X J, XIAO F, LIU L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7):40-46.
[13] 张石林, 屠惠民. 铋试金富集矿石中贵金属的研究[J]. 矿产与地质, 1981(2):90-102.ZHANG S L, TU H M. Study on the enrichment of precious metals in ore with bismuth assay[J]. Mineral Resources and Geology, 1981(2):90-102.
ZHANG S L, TU H M. Study on the enrichment of precious metals in ore with bismuth assay[J]. Mineral Resources and Geology, 1981(2):90-102.
-