铋试金-高分辨率连续光源火焰原子吸收光谱法测定矿石中的痕量金

王甜甜, 郭晓瑞, 樊蕾, 毛香菊, 刘闫, 倪文山. 铋试金-高分辨率连续光源火焰原子吸收光谱法测定矿石中的痕量金[J]. 矿产综合利用, 2024, 45(4): 128-133. doi: 10.3969/j.issn.1000-6532.2024.04.019
引用本文: 王甜甜, 郭晓瑞, 樊蕾, 毛香菊, 刘闫, 倪文山. 铋试金-高分辨率连续光源火焰原子吸收光谱法测定矿石中的痕量金[J]. 矿产综合利用, 2024, 45(4): 128-133. doi: 10.3969/j.issn.1000-6532.2024.04.019
WANG Tiantian, GUO Xiaorui, FAN Lei, MAO Xiangju, LIU Yan, NI Wenshan. Determination of Trace Au in Minerals by Bismuth Fire Assay with Enrichment-high Resolution Continuum Source Flame Atomic Absorption Spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 128-133. doi: 10.3969/j.issn.1000-6532.2024.04.019
Citation: WANG Tiantian, GUO Xiaorui, FAN Lei, MAO Xiangju, LIU Yan, NI Wenshan. Determination of Trace Au in Minerals by Bismuth Fire Assay with Enrichment-high Resolution Continuum Source Flame Atomic Absorption Spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 128-133. doi: 10.3969/j.issn.1000-6532.2024.04.019

铋试金-高分辨率连续光源火焰原子吸收光谱法测定矿石中的痕量金

  • 基金项目: 国家自然科学基金项目[22106148]
详细信息
    作者简介: 王甜甜(1995-),女,助理工程师,主要从事无机元素和分析方法研究
    通讯作者: 倪文山(1980-),男,正高级工程师,主要从事无机元素测试和分析方法的研究
  • 中图分类号: P575.3

Determination of Trace Au in Minerals by Bismuth Fire Assay with Enrichment-high Resolution Continuum Source Flame Atomic Absorption Spectrometry

More Information
  • 这是一篇分析测试领域的论文。铋试金作为一种高效分离富集矿石中痕量贵金属的绿色环保火试金方法,有效避免了铅试金有毒污染的问题。本篇采用低毒的Bi2O3作为Au元素的火试金捕集剂,在高温熔融过程中Bi2O3经试金配料中的还原剂面粉还原为Bi后,与样品中的Au形成Au2Bi合金,并采用Ag保护灰吹法使Au与Ag形成约1 mg的Ag合粒;对Ag合粒采用酸溶法将其加热溶解,使Au完全进入溶液。本实验以国家标准物质GBW 07205中Au元素含量为参考,对连续光源火焰原子吸收光谱仪的CCD检测器有效像素点进行了优化选择,综合其灵敏度和稳定性,选择7作为CCD检测器的有效像素点。在质量浓度0~20 μg/mL范围内与其对应吸光度运用二次方程最小二乘法拟合校准曲线,校准曲线拟合系数为0.999 8;特征浓度为0.069 97 μg/mL,方法检出限为0.012 7 μg/mL。按照选定实验方法及优化仪器参数下对国家标准物质中Au进行测定,测定值与标准值吻合良好,相对标准偏差(RSD,n=6)为2.23%~4.54%。将所建立的方法应用于实际矿石样品中Au的测试,加标回收率为92.6%~106%;相对标准偏差(n=6)为2.53%~4.70%,满足国家地质矿产行业标准DZ/T 0130—2006的要求。

  • 加载中
  • 图 1  Au元素在不同有效像素点下的平均原子吸收光谱

    Figure 1. 

    表 1  HR-CS-AAS的工作参数

    Table 1.  Working parameters of HR-CS-AAS instrument

    参数 设定值 参数 设定值
    分析谱线波长/nm 242.795 0 燃烧头类型/ mm 100
    积分模式 平均值 火焰类型 乙炔-空气
    读数时间/s 3 燃气流量/(L/h) 45
    有效像素/个 7 燃烧头高度/ mm 6
    背景校正方式 迭代基线校正 检测器像素 200
    下载: 导出CSV

    表 2  不同像素点下Au元素含量的校准曲线参数

    Table 2.  Calibration curve parameters of Au element content at different pixels

    像素点 Au测
    定值/
    (g/t)
    相关
    系数R2
    斜率Abs/
    (μg/mL)
    特征
    浓度/
    (μg/mL)
    标准
    偏差
    1 13.25 0.999 7 0.017 92 0.243 20 0.106 2
    3 13.51 0.999 7 0.048 09 0.090 65 0.109 7
    5 13.72 0.999 8 0.062 87 0.069 35 0.101 9
    7 13.69 0.999 8 0.066 01 0.066 05 0.102 4
    9 13.61 0.999 8 0.066 21 0.065 85 0.107 6
    11 13.54 0.999 8 0.066 25 0.065 81 0.104 6
    下载: 导出CSV

    表 3  国家标准物质中Au含量的测定结果

    Table 3.  Measurement results of Au content in national standard substances

    标准样品 标准值
    /(µg/g)
    测定平均值
    /(µg/g)
    RSD
    (n=6)/%
    GBW 07203 3.59±0.02 3.57 4.54
    GBW 07204 7.16±0.03 7.17 3.68
    GBW 07205 14.0±0.10 13.9 2.23
    GBW 07206 19.4±0.10 19.3 3.60
    下载: 导出CSV

    表 4  实际矿石中Au的测定结果

    Table 4.  Measurement results of Au in actual ores

    样品 测定值/
    (μg/g)
    相对标准
    偏差RSD(n=6)/%
    加标量/
    (μg/g)
    测得总量/
    (μg/g)
    回收
    率/%
    1 0.86 4.70 1.00 1.83 97.0
    2 1.77 4.14 2.00 3.80 102.0
    3 3.65 3.28 5.00 8.63 99.6
    4 10.07 2.53 5.00 14.70 92.6
    5 4.25 3.14 5.00 9.26 100.0
    6 15.82 2.78 10.00 26.40 106.0
    7 6.76 4.33 5.00 11.90 103.0
    8 10.67 3.02 10.00 20.53 98.6
    9 17.34 2.91 10.00 27.02 96.8
    10 2.09 3.49 2.00 4.03 97.0
    下载: 导出CSV
  • [1]

    陈永红, 孟宪伟, 王立臣. 2019—2020年中国金分析测定的进展[J]. 黄金, 2022, 43(1): 105-112.CHEN Y H, MENG X W , WANG L C. Progress of gold analysis and determination in China during 2019-2020[J]. Gold, 2022, 43(1): 105-112.

    CHEN Y H, MENG X W , WANG L C. Progress of gold analysis and determination in China during 2019-2020[J]. Gold, 2022, 43(1): 105-112.

    [2]

    侯凯, 谢贤, 童雄, 等. 我国金矿床的工业类型及选矿研究方法[J]. 矿产综合利用, 2014(4):9-15+24.HOU K, XIE X, TONG X, et al. Review of the commercial types of gold deposits and their beneficiation methods at home[J]. Multipurpose Utilization of Mineral Resources, 2014(4):9-15+24. doi: 10.3969/j.issn.1000-6532.2014.04.003

    HOU K, XIE X, TONG X, et al. Review of the commercial types of gold deposits and their beneficiation methods at home[J]. Multipurpose Utilization of Mineral Resources, 2014(4):9-15+24. doi: 10.3969/j.issn.1000-6532.2014.04.003

    [3]

    董守安. 现代贵金属分析[M]. 北京: 化学工业出版社, 2006.DONG S A. Modern precious metals analysis[M]. Beijing: Chemical Industry Press, 2006.

    DONG S A. Modern precious metals analysis[M]. Beijing: Chemical Industry Press, 2006.

    [4]

    李跃光, 陈为亮. 贵金属元素分析中的分离富集技术应用进展[J]. 贵金属, 2012, 33(4):71-74.LI Y G, CHEN W L. Comments on technical progress of separation and concentration for precious metals elemental analysis[J]. Precious Metals, 2012, 33(4):71-74. doi: 10.3969/j.issn.1004-0676.2012.04.014

    LI Y G, CHEN W L. Comments on technical progress of separation and concentration for precious metals elemental analysis[J]. Precious Metals, 2012, 33(4):71-74. doi: 10.3969/j.issn.1004-0676.2012.04.014

    [5]

    李邦民. 火试金技术的发展与应用[J]. 青海师范大学学报(自然科学版), 2012, 28(3):82-85.LI B M. The development and application of the fire assay method[J]. Journal of Qinghai Normal University (Natural Science Edition), 2012, 28(3):82-85

    LI B M. The development and application of the fire assay method[J]. Journal of Qinghai Normal University (Natural Science Edition), 2012, 28(3):82-85

    [6]

    赵延庆. 聚氨酯泡沫塑料吸附-电感耦合等离子体质谱法测定地质化探样品中金[J]. 冶金分析, 2016, 36(7):34-38.ZHAO Y Q. Determination of gold in geochemical samples by inductively coupled plasma mas spectrometry with polyurethane foam plastic absorption[J]. Metallurgical Analysis, 2016, 36(7):34-38

    ZHAO Y Q. Determination of gold in geochemical samples by inductively coupled plasma mas spectrometry with polyurethane foam plastic absorption[J]. Metallurgical Analysis, 2016, 36(7):34-38

    [7]

    倪文山, 孟亚兰, 姚明星, 等. 铅试金富集-塞曼石墨炉 原子吸收光谱法测定矿石样品中铂钯铑铱[J]. 冶金分析, 2010, 30(3):23-26.NI W S, MENG Y L, YAO M X, et al. Determination of platinum, palladium, rhodium and iridium in mineral samples by Zeeman graphite furnace atomic absorption spectrometry after the preconcentration with lead fire assaying[J]. Metallurgical Analysis, 2010, 30(3):23-26. doi: 10.3969/j.issn.1000-7571.2010.03.005

    NI W S, MENG Y L, YAO M X, et al. Determination of platinum, palladium, rhodium and iridium in mineral samples by Zeeman graphite furnace atomic absorption spectrometry after the preconcentration with lead fire assaying[J]. Metallurgical Analysis, 2010, 30(3):23-26. doi: 10.3969/j.issn.1000-7571.2010.03.005

    [8]

    张帆, 王琳, 郭家凡, 等. 铋试金-二次灰吹-ICP-AES测定黑色岩中的铂、钯、金[J]. 贵金属, 2022, 43(2):69-75.ZHANG F, WANG L, GUO J F, et al. Determination of Pt, Pd and Au in black rock bybismuth assay - secondary ash blowing - ICP-AES[J]. Precious Metals, 2022, 43(2):69-75. doi: 10.3969/j.issn.1004-0676.2022.02.012

    ZHANG F, WANG L, GUO J F, et al. Determination of Pt, Pd and Au in black rock bybismuth assay - secondary ash blowing - ICP-AES[J]. Precious Metals, 2022, 43(2):69-75. doi: 10.3969/j.issn.1004-0676.2022.02.012

    [9]

    孙启亮, 毛香菊, 郭晓瑞, 等. 铅试金富集-高分辨率连续光源石墨炉原子吸收光谱法测定地球化学样品中痕量金铂钯[J]. 冶金分析, 2021, 41(7):10-16.SUN Q L, MAO X J, GUO X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7):10-16

    SUN Q L, MAO X J, GUO X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7):10-16

    [10]

    姚明星, 毛香菊, 郭晓瑞, 等. 银保护灰吹铅试金-高分辨率连续光源火焰原子吸收光谱法测定铁粉中痕量金[J]. 冶金分析, 2022, 42(8):48-54.YAO M X, MAO X J, GUO X R, et al. Determination of trace gold in iron powder by high resolution continuum source flame atomic absorption spectrometry with silver protection cupellation lead fire assay enrichment[J]. Metallurgical Analysis, 2022, 42(8):48-54.

    YAO M X, MAO X J, GUO X R, et al. Determination of trace gold in iron powder by high resolution continuum source flame atomic absorption spectrometry with silver protection cupellation lead fire assay enrichment[J]. Metallurgical Analysis, 2022, 42(8):48-54.

    [11]

    李可及, 刘淑君, 邵坤. 铋锑试金测定硫化铜镍矿中钌铑钯铱铂[J]. 分析化学, 2014, 42(6):909-912.LI K J, LIU S J, SHAO K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):909-912.

    LI K J, LIU S J, SHAO K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):909-912.

    [12]

    毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源 石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7):40-46.MAO X J, XIAO F, LIU L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7):40-46.

    MAO X J, XIAO F, LIU L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7):40-46.

    [13]

    张石林, 屠惠民. 铋试金富集矿石中贵金属的研究[J]. 矿产与地质, 1981(2):90-102.ZHANG S L, TU H M. Study on the enrichment of precious metals in ore with bismuth assay[J]. Mineral Resources and Geology, 1981(2):90-102.

    ZHANG S L, TU H M. Study on the enrichment of precious metals in ore with bismuth assay[J]. Mineral Resources and Geology, 1981(2):90-102.

  • 加载中

(1)

(4)

计量
  • 文章访问数:  267
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2022-10-23
刊出日期:  2024-08-25

目录