基于第一性原理分析氯化胆碱-草酸对氧化锌浸出作用机理

张晋霞, 杨超, 高淑玲, 牛福生, 何胜韬, 郑伟东. 基于第一性原理分析氯化胆碱-草酸对氧化锌浸出作用机理[J]. 矿产综合利用, 2024, 45(4): 153-160. doi: 10.3969/j.issn.1000-6532.2024.04.023
引用本文: 张晋霞, 杨超, 高淑玲, 牛福生, 何胜韬, 郑伟东. 基于第一性原理分析氯化胆碱-草酸对氧化锌浸出作用机理[J]. 矿产综合利用, 2024, 45(4): 153-160. doi: 10.3969/j.issn.1000-6532.2024.04.023
ZHANG Jinxia, YANG Chao, GAO Shuling, NIU Fusheng, HE Shengtao, ZHENG Weidong. Analysis of the Mechanism of Choline Chloride-oxalate Action on Zinc Oxide Leaching Based on First Principles[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 153-160. doi: 10.3969/j.issn.1000-6532.2024.04.023
Citation: ZHANG Jinxia, YANG Chao, GAO Shuling, NIU Fusheng, HE Shengtao, ZHENG Weidong. Analysis of the Mechanism of Choline Chloride-oxalate Action on Zinc Oxide Leaching Based on First Principles[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 153-160. doi: 10.3969/j.issn.1000-6532.2024.04.023

基于第一性原理分析氯化胆碱-草酸对氧化锌浸出作用机理

  • 基金项目: 国家自然科学基金项目(51904106);河北省自然科学基金资助项目(E2021209015);唐山市基础创新团队项目(19130207C)
详细信息
    作者简介: 张晋霞(1979-),女,博士,教授,硕士生导师。研究方向为有色金属冶金。
    通讯作者: 杨超(1995-),男,硕士研究生,研究方向为有色金属冶金
  • 中图分类号: TD952;TF813

Analysis of the Mechanism of Choline Chloride-oxalate Action on Zinc Oxide Leaching Based on First Principles

More Information
  • 这是一篇冶金工程领域的文章。为探究氯化胆碱-草酸对含锌尘泥中氧化锌的浸出机理,运用量子力学手段,模拟氯化胆碱-草酸1∶1、1∶2低共熔溶剂在氧化锌表面相互作用,通过实验对模拟结果进行验证。结果表明,氯化胆碱-草酸形成的分子间氢键对低共熔溶剂稳定性起到重要作用,电子得失情况为Ch+得到电子,OA、Cl-失去电子。ZnO(001)面为氧化锌完全解理面,氧与锌原子形成四面体结构,在与外界发生反应过程中氧原子容易得电子,锌原子容易失去电子。氯化胆碱-草酸和氧化锌相互作用过程中氧化锌失去电子,氯化胆碱-草酸得到电子。ChCl-2OA和ZnO相互作用能$ \Delta \mathrm{E} $=-819.6896Ha较小,说明氧化锌更容易与ChCl-2OA发生反应。径向分布函数表明氯化胆碱-草酸在与氧化锌相互作用过程中主要以化学吸附为主,物理吸附为辅,化学吸附形成的Cl-Zn比O-Zn贡献较大。通过纯矿物实验验证可知,ChCl-2OA对氧化锌的浸出效果较好,验证了利用分子模拟氯化胆碱-草酸与氧化锌相互作用机理的准确性,为低共熔溶剂浸出含锌尘泥提供理论基础。

  • 加载中
  • 图 1  两种比例的氯化胆碱-草酸声子光谱

    Figure 1. 

    图 2  氧化锌的模拟XRD

    Figure 2. 

    图 3  两种比例氯化胆碱-草酸分子结构

    Figure 3. 

    图 4  两种比例氯化胆碱-草酸与ZnO(001)面初始构型

    Figure 4. 

    图 5  两种比例氯化胆碱-草酸与氧化锌稳定构型

    Figure 5. 

    图 6  不同比例氯化胆碱-草酸与氧化锌径向分布

    Figure 6. 

    图 7  不同浸出时间氧化锌浸出率

    Figure 7. 

    表 1  两种比例氯化胆碱-草酸电荷布居/e

    Table 1.  Charge distribution of choline chloride and oxalic acid in two proportions

    ChCl-OA ChCl-2OA
    Ch+ +0.728 +0.752
    Cl- -0.569 -0.564
    OA -0.159 -0.188
    其中+代表得到电子,-代表失去电子
    下载: 导出CSV

    表 2  氧化锌常见解理面表面能/(J/m2)

    Table 2.  Common surface energy of metal oxides

    单矿物001011111101110
    ZnO0.81773.92753.92712.08522.4053
    下载: 导出CSV

    表 3  原子层数对表面能的影响

    Table 3.  Influence of atomic layer number on surface energy

    完全解理面 原子层数 原子数 表面能J/m2


    ZnO(001)
    2 8 1.5438
    3 12 1.5908
    4 16 1.6079
    5 20 1.6088
    6 24 1.6093
    下载: 导出CSV

    表 4  氧化锌各原子电荷布居

    Table 4.  Atomic charge population of zinc oxide

    原子各轨道布居数总数电荷数
    s轨道p轨道d轨道
    O1.864.97-6.82-0.83
    Zn0.480.729.9711.180.83
    下载: 导出CSV

    表 5  两种比例氯化胆碱-草酸和氧化锌前线分子轨道能量

    Table 5.  Frontier molecular orbital energy of choline chloride - oxalic acid and zinc oxide in two proportions

    HOMO LUMO △E1 △E2
    ChCl-OA -0.2023 -0.0679 0.1734 0.0941
    ChCl-2OA -0.2118 -0.1154 0.1897 0.0771
    ZnO -0.1625 -0.0221
    其中ΔE1=|HOMODES−LUMOZnO|、△E2=|HOMOZnO−LUMODES|
    下载: 导出CSV

    表 6  两种比例氯化胆碱-草酸与氧化锌相互作用能/Ha

    Table 6.  Interaction energy between choline chlorine-oxalic acid and zinc oxide in two proportions

    低共熔溶剂 EA EB EAB △E
    ChCl-OA 101.2460 -448581.5872 -449217.2274 -736.8862
    ChCl-2OA 130.9856 -448581.5872 -449267.8158 -817.2142
    下载: 导出CSV
  • [1]

    申亚芳, 张馨圆, 王乐, 等. 氧化锌矿处理方法现状[J]. 矿产综合利用, 2020(2):23-28.SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):23-28. doi: 10.3969/j.issn.1000-6532.2020.02.004

    SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):23-28. doi: 10.3969/j.issn.1000-6532.2020.02.004

    [2]

    马爱元, 郑雪梅, 李松 , 等. 含锌钢铁冶金渣尘处理技术现状[J]. 矿产综合利用, 2020(4): 1-7.MA A Y, ZHENG X M, LI S, et al. Present situation of zinc metallurgical slags and dusts treatment technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 1-7.

    MA A Y, ZHENG X M, LI S, et al. Present situation of zinc metallurgical slags and dusts treatment technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 1-7.

    [3]

    牛福生, 倪文, 张晋霞, 等. 中国钢铁冶金尘泥资源化利用现状及发展方向[J]. 钢铁, 2016, 51(8):1-5+10.NIU F S, NI W, ZHANG J X, et al. Current situation and development direction of resource utilization of metallurgical dust sludge of iron and steel in China[J]. Steel, 2016, 51(8):1-5+10.

    NIU F S, NI W, ZHANG J X, et al. Current situation and development direction of resource utilization of metallurgical dust sludge of iron and steel in China[J]. Steel, 2016, 51(8):1-5+10.

    [4]

    谢泽强, 郭宇峰, 陈凤, 等. 钢铁厂含锌粉尘综合利用现状及展望[J]. 烧结球团, 2016, 41(5):53-56+61.XIE Z Q, GUO Y F, CHEN F, et al. Current status and prospects of comprehensive utilization of zinc-containing dust in steel plants[J]. Sintered Pellets, 2016, 41(5):53-56+61.

    XIE Z Q, GUO Y F, CHEN F, et al. Current status and prospects of comprehensive utilization of zinc-containing dust in steel plants[J]. Sintered Pellets, 2016, 41(5):53-56+61.

    [5]

    信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151.XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    [6]

    Wu Zhaojin, Huang Wei, Cui Keke, et al. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol[J]. Journal of Hazardous Materials, 2014, 278(8):91-99.

    [7]

    张晋霞, 冯洪均, 王龙, 等. 含锌冶金尘泥氨浸溶蚀实验研究[J]. 矿产综合利用, 2021(1):124-129.ZHANG J X, FENG H J, WANG L, et al. Study on treating zinc-bearing dust by Ammonia leaching process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021

    ZHANG J X, FENG H J, WANG L, et al. Study on treating zinc-bearing dust by Ammonia leaching process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021

    [8]

    王英磊, 陈鹏月, 游咸丰, 等. 低共熔溶剂氯化胆碱-草酸催化合成乙酰水杨酸[J]. 科学技术与工程, 2018, 18(25):212-215.WANG Y L, CHEN P Y, YOU X F, et al. Low eutectic solvent choline chloride-oxalic acid catalyzed synthesis of acetylsalicylic acid[J]. Science Technology and Engineering, 2018, 18(25):212-215. doi: 10.3969/j.issn.1671-1815.2018.25.033

    WANG Y L, CHEN P Y, YOU X F, et al. Low eutectic solvent choline chloride-oxalic acid catalyzed synthesis of acetylsalicylic acid[J]. Science Technology and Engineering, 2018, 18(25):212-215. doi: 10.3969/j.issn.1671-1815.2018.25.033

    [9]

    毛春峰, 赵荣祥, 李秀萍. 氯化胆碱/草酸低共熔溶剂高效脱除模拟油中硫[J]. 化学工程, 2017, 45(5):6-10.MAO C F, ZHAO R X, LI X P. Efficient removal of sulfur from simulated oil with choline chloride/oxalic acid low eutectic solvent[J]. Chemical Engineering, 2017, 45(5):6-10. doi: 10.3969/j.issn.1005-9954.2017.05.002

    MAO C F, ZHAO R X, LI X P. Efficient removal of sulfur from simulated oil with choline chloride/oxalic acid low eutectic solvent[J]. Chemical Engineering, 2017, 45(5):6-10. doi: 10.3969/j.issn.1005-9954.2017.05.002

    [10]

    许涛, 廖美婷, 衷水平, 等. 紫金山黄铁矿的第一性原理和前线轨道理论分析[J]. 黄金科学技术, 2015, 23(4):57-62.XU T, LIAO M T, ZHONG S P, et al. First principles and frontline orbital theory analysis of Zijinshan Pyrite[J]. Gold Science and Technology, 2015, 23(4):57-62. doi: 10.11872/j.issn.1005-2518.2015.04.057

    XU T, LIAO M T, ZHONG S P, et al. First principles and frontline orbital theory analysis of Zijinshan Pyrite[J]. Gold Science and Technology, 2015, 23(4):57-62. doi: 10.11872/j.issn.1005-2518.2015.04.057

    [11]

    王邸博, 陈达畅, 皮守苗, 等. 基于密度泛函理论的SF_6分解组分在ZnO(001)吸附及传感性能研究[J]. 电工技术学报, 2020, 35(7):1592-1602.WANG D B, CHEN D C, PI S M, et al. Study on the adsorption and sensing performance of SF_6 decomposition components in ZnO(001) based on density flooding theory[J]. Journal of Electrotechnology, 2020, 35(7):1592-1602.

    WANG D B, CHEN D C, PI S M, et al. Study on the adsorption and sensing performance of SF_6 decomposition components in ZnO(001) based on density flooding theory[J]. Journal of Electrotechnology, 2020, 35(7):1592-1602.

    [12]

    刘亚明, 戴宪起, 姚树文, 等. Sn对O在ZnO(001)面上吸附影响的第一原理研究[J]. 郑州大学学报(理学版), 2008(1):76-79.LIU Y M, DAI X Q, YAO S W, et al. First-principles study of the effect of Sn on O adsorption on the ZnO(001) surface[J]. Journal of Zhengzhou University (Science Edition), 2008(1):76-79.

    LIU Y M, DAI X Q, YAO S W, et al. First-principles study of the effect of Sn on O adsorption on the ZnO(001) surface[J]. Journal of Zhengzhou University (Science Edition), 2008(1):76-79.

    [13]

    李玉琼, 陈建华, 陈晔, 等. 黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J]. 中国有色金属学报, 2011, 21(4):919-926.LI Y Q, CHEN J H, CHEN Y, et al. Density flood theory calculation of surface properties of pyrite(100) and its effect on flotation[J]. Chinese Journal of Nonferrous Metals, 2011, 21(4):919-926.

    LI Y Q, CHEN J H, CHEN Y, et al. Density flood theory calculation of surface properties of pyrite(100) and its effect on flotation[J]. Chinese Journal of Nonferrous Metals, 2011, 21(4):919-926.

    [14]

    王根, 李新梅. 第一性原理计算Cu、Co含量对 CoCuFeNi系高熵合金的影响[J]. 功能材料, 2020, 51(3): 3189-3195.WANG G , LI X M. Calculation of the effect of Cu and Co content on the CoCuFeNi system of high-entropy alloys by first-nature principle[J]. Functional Materials, 2020, 51(3): 3189-3195.

    WANG G , LI X M. Calculation of the effect of Cu and Co content on the CoCuFeNi system of high-entropy alloys by first-nature principle[J]. Functional Materials, 2020, 51(3): 3189-3195.

    [15]

    GaoZ, SunW, HuY. Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9):2930-2937. doi: 10.1016/S1003-6326(14)63428-2

    [16]

    徐尧. 白云母浮选体系的分子动力学模拟研究[D]. 上海: 华东理工大学, 2015.XU Y. Molecular dynamics simulation study of white mica flotation system[D]. Shanghai: East China University of Science and Technology, 2015.

    XU Y. Molecular dynamics simulation study of white mica flotation system[D]. Shanghai: East China University of Science and Technology, 2015.

    [17]

    Agrawal Ravi, Peng Bei, Espinosa Horacio D. Experimental-computational investigation of ZnO nanowires strength and fracture[J]. Nano letters, 2009, 9(12):

    [18]

    何伟平, 黄菊, 王德堂, 等. 苯乙烯与苯酚反应的前线轨道理论分析[J]. 原子与分子物理学报, 2017, 34(2):231-237.HE W P, HUANG J, WANG D T, et al. Front-line orbital theory analysis of the reaction of styrene with phenol[J]. Journal of Atomic and Molecular Physics, 2017, 34(2):231-237.

    HE W P, HUANG J, WANG D T, et al. Front-line orbital theory analysis of the reaction of styrene with phenol[J]. Journal of Atomic and Molecular Physics, 2017, 34(2):231-237.

    [19]

    张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.ZHANG H T. Molecular dynamics simulation of adsorption of combined dodecylamine and oleic acid trap on lithium mica surface[D]. Ganzhou: Jiangxi University of Technology, 2017.

    ZHANG H T. Molecular dynamics simulation of adsorption of combined dodecylamine and oleic acid trap on lithium mica surface[D]. Ganzhou: Jiangxi University of Technology, 2017.

    [20]

    Fairushin I , Khrapak S A , Mokshin A . Direct evaluation of the physical characteristics of Yukawa fluids based on a simple approximation for the radial distribution function[J]. Results in Physics, 2020, 19(12): 103359.

  • 加载中

(7)

(6)

计量
  • 文章访问数:  449
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2022-08-20
刊出日期:  2024-08-25

目录