柴达木盆地砂砾型孔隙卤水夏季自然蒸发实验

靳芳, 贾建团, 郭敏. 柴达木盆地砂砾型孔隙卤水夏季自然蒸发实验[J]. 矿产综合利用, 2024, 45(4): 161-167. doi: 10.3969/j.issn.1000-6532.2024.04.024
引用本文: 靳芳, 贾建团, 郭敏. 柴达木盆地砂砾型孔隙卤水夏季自然蒸发实验[J]. 矿产综合利用, 2024, 45(4): 161-167. doi: 10.3969/j.issn.1000-6532.2024.04.024
JIN Fang, JIA Jiantuan, GUO Min. Natural Evaporation Experiment of Sand Gravel Type Pore Brine in Qaidam Basin in Summer[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 161-167. doi: 10.3969/j.issn.1000-6532.2024.04.024
Citation: JIN Fang, JIA Jiantuan, GUO Min. Natural Evaporation Experiment of Sand Gravel Type Pore Brine in Qaidam Basin in Summer[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 161-167. doi: 10.3969/j.issn.1000-6532.2024.04.024

柴达木盆地砂砾型孔隙卤水夏季自然蒸发实验

  • 基金项目: 青海省科学技术厅应用基础研究项目(2022-ZJ-734)
详细信息
    作者简介: 靳芳(1973-),女,高级工程师,研究方向为盐湖资源开发利用
  • 中图分类号: TD953

Natural Evaporation Experiment of Sand Gravel Type Pore Brine in Qaidam Basin in Summer

  • 这是一篇矿业工程领域的论文。柴达木盆地深层砂砾型孔隙卤水属高钙、高钠、低钾的不饱和氯化物型卤水,尚未开发。选取大浪滩矿区地下1 000~2 000 m处砂砾型孔隙卤水480 kg,在夏季自然状态下蒸发结晶,分析各离子在固、液相中的分布规律及盐类结晶规律、结晶形态,研究钾的主要析出特点。结果表明:在室外自然状态下蒸发时,析盐过程主要分为石盐→光卤石→水氯镁石→溢晶石四个阶段,其中石盐阶段析盐规律符合Na+,K+,Mg2+//Cl-—H2O 体系25 ℃ 相图,光卤石、水氯镁石阶段符合K+,Ca2+,Mg2+//Cl- —H2O体系25 ℃相图;钾有单独的析出阶段,该阶段钾主要以光卤石形态析出,钾的回收率达85.76%,钾混盐中K+含量9.27%,是生产钾肥的优质原料;钙在水氯镁石阶段之后析出。实验结果可为该类型卤水的开发利用提供参考。

  • 加载中
  • 图 1  固相和液相中各离子浓度变化

    Figure 1. 

    图 2  Na+, K+, Mg2+//Cl-—H2O(25 ℃)相图

    Figure 2. 

    图 3  K+,Ca2+,Mg2+//Cl-—H2O 25 ℃相图

    Figure 3. 

    图 4  石盐+石膏的XRD

    Figure 4. 

    图 5  光卤石的 XRD

    Figure 5. 

    表 1  原始卤水化学组成/(mg/L)

    Table 1.  Chemical composition of original brines

    K+* Na+* Ca2+* Mg2+* Cl+* SO42-* B2O3 Li+ Sr2+ Rb+ Cs+ Br- I-
    3.95 87.06 4.57 10.65 177.7 1.90 103.6 5.06 64.34 0.44 0.037 45.57 2.72
    *单位为g/L。
    下载: 导出CSV

    表 2  卤水化学组成

    Table 2.  Chemical composition of brine

    编号 离子浓度/(g/L) pH值 密度 卤温 矿化度 相图指数(g/100g S) 相图指数(g/100g S)
    K+ Na+ Ca2+ Mg2+ Cl- /(g/cm3) /℃ /(g/L) NaCl KCl MgCl2 KCl CaCl2 MgCl2
    L0 3.95 87.06 4.57 10.65 177.7 6.82 1.188 18.6 286.0 81.80 2.78 15.42 12.17 20.44 67.39
    L1 4.91 94.4 5.13 12.17 197.6 6.39 1.207 28.1 315.9 80.80 3.15 16.05 13.14 19.94 66.92
    L3-1 8.25 74.72 7.88 22.56 203.8 6.28 1.213 12.0 319.2 64.60 5.35 30.06 12.49 17.34 70.18
    L5-2 12.90 53.44 11.79 36.00 221.7 5.91 1.229 12.0 344.4 45.07 8.16 46.78 12.41 16.47 71.12
    L7-3 18.55 31.13 16.44 52.30 248.6 5.56 1.245 39.5 379.7 24.78 11.08 64.15 12.38 15.93 71.69
    L11 22.28 15.10 19.10 66.17 270.6 5.05 1.273 23.0 394.5 11.29 12.49 76.22 11.98 14.92 73.10
    L12-4 23.37 15.20 20.44 66.93 272.3 5.05 1.277 21.3 398.9 11.19 12.90 75.91 12.27 15.57 72.16
    L13 22.88 14.23 20.84 69.55 276.9 5.00 1.284 19.0 405.6 10.27 12.39 77.35 11.67 15.44 72.89
    L14 21.07 11.03 21.61 72.10 284.3 4.88 1.285 25.0 411.3 8.00 11.46 80.55 10.50 15.65 73.85
    L15 18.63 10.31 23.02 74.31 287.0 4.82 1.290 16.0 414.6 7.43 10.07 82.50 9.10 16.33 74.57
    L16 15.12 9.68 24.8 75.89 292.7 4.78 1.291 16.0 419.5 7.02 8.22 84.76 7.30 17.40 75.30
    L18-5 9.70 7.11 27.80 79.38 292.9 4.62 1.293 20.9 423.5 5.20 5.32 89.48 4.55 18.94 76.51
    L19 7.08 6.78 29.38 83.55 306.8 4.47 1.306 15.0 435.0 4.81 3.77 91.42 3.20 19.27 77.53
    L22 2.46 3.81 34.23 91.48 336.5 3.97 1.330 18.0 470.1 2.60 1.26 96.14 1.02 20.70 78.27
    L24 1.51 2.19 37.12 98.61 356.1 3.52 1.346 21.0 497.3 1.41 0.73 97.86 0.59 20.89 78.52
    L25-6 1.35 2.43 37.77 98.47 360.4 3.59 1.349 21.0 504.8 1.56 0.65 97.78 0.52 21.22 78.26
    L27-7 1.20 2.22 37.20 100.2 375.4 3.49 1.354 22.0 518.4 1.41 0.58 98.01 0.47 20.70 78.83
    L30 1.01 2.23 45.31 102.5 384.9 3.22 1.368 21.0 538.3 1.39 0.47 98.14 0.36 23.73 75.91
    L33-8 0.75 8.92 60.72 89.89 393.5 2.96 1.377 30.0 557.0 6.03 0.38 93.59 0.27 32.23 67.50
    L35-9 0.52 2.48 63.48 86.60 380.5 2.63 1.378 17.0 538.4 1.82 0.29 97.89 0.19 34.07 65.74
    L36 0.68 1.44 69.58 77.87 355.1 3.20 1.367 -1.0 508.6 1.18 0.42 98.40 0.26 38.61 61.13
    L39-10 0.96 1.19 89.46 75.16 383.4 2.49 1.399 18.0 552.1 2.48 0.60 96.92 0.34 45.54 54.13
    注:编号中带“-n"样为第n次固液分离时的卤水样。
    下载: 导出CSV

    表 3  析出矿物组成

    Table 3.  Precipitated mineral composition

    编号 卤水密度盐含量/%
    /(g/cm3NaClCaCl2KClMgCl2CaSO4•2H2OKCl•MgCl2•6H2OMgCl2•6H2OCaCl2•6H2O合计
    S11.20781.590.370.310.822.47---85.56
    S3-11.21392.830.680.170.671.61---95.95
    S5-21.22995.460.280.441.250.77---98.20
    S7-31.24589.680.410.552.430.65---93.72
    S111.27383.690.690.613.210.22---88.41
    S12-41.27787.550.751.075.010.95---95.33
    S131.28470.681.2710.434.270.18---86.83
    S141.28528.742.2630.079.750.15---70.97
    S151.29010.180.83-5.350.04175.97--92.37
    S18-51.29319.640.97-2.400.2670.85--94.12
    S221.30610.582.40-10.720.05455.93--79.69
    S231.33011.312.90-12.680.05947.26--74.20
    S241.34613.024.23-16.500.05431.41--65.21
    S25-61.34913.152.30-10.210.2255.36--81.24
    S27-71.35422.933.16-12.220.4138.53--77.25
    S321.3683.332.35--0.0050.3092.11-98.10
    S33-81.3774.042.14--0.0330.6590.89-97.74
    S35-91.3780.687.43--0.0200.6183.83-92.57
    S361.3671.13---0.0040.295.3293.2199.95
    S39-101.3991.744.56--0.0180.2588.15-94.72
    注:Sx为和前一样品取样间隔内析出盐;Sx-n为第n次固液分离出的混合盐。
    下载: 导出CSV

    表 4  物料汇总

    Table 4.  Material summary

    料别样号产品名称重量产率组分含量/%分布率/%
    /kg/%K+Na+Ca2+Mg2+SO42-K+Na+Ca2+Mg2+SO42-
    L0原卤480.001000.337.330.380.900.16100100100100100
    出(入)L12-4卤水78.8816.431.831.191.605.240.03590.352.6768.3996.043.60
    石盐91.8319.130.1636.400.510.300.739.2195.0025.326.4187.00
    失水与损失309.2964.44
    出(入)L25-6卤水41.438.630.100.182.807.300.0082.590.2162.8670.280.43
    光卤石14.783.089.275.940.567.020.1585.762.494.4924.092.89
    失水与损失22.674.72
      合计       97.5697.7192.67100.7890.32
    下载: 导出CSV
  • [1]

    李洪普, 郭廷峰, 高松, 等. 柴达木西部新近纪以来固液相钾盐资源调查评价报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院, 2013.LI H P, GUO T F, GAO S, et al. Investigation and evaluation report on solid and liquid potash resources in western qaidam since neogene [R]. Golmud: Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute, 2013.

    LI H P, GUO T F, GAO S, et al. Investigation and evaluation report on solid and liquid potash resources in western qaidam since neogene [R]. Golmud: Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute, 2013.

    [2]

    李洪普, 刘国泰, 马宏涛, 等. 青海省茫崖行委黑北凹地液体钾矿详查报告[R]. 格尔木: 青海省柴达木综合地质矿产勘院, 2013.LI H P, LIU G T, MA H T, et al. Detailed investigation report on the liquid potassium mine in Heibei depression of Mangyaxing Commission, Qinghai Province [R]. Golmud: Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute, 2013.

    LI H P, LIU G T, MA H T, et al. Detailed investigation report on the liquid potassium mine in Heibei depression of Mangyaxing Commission, Qinghai Province [R]. Golmud: Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute, 2013.

    [3]

    李洪普, 侯献华, 潘彤, 等. 柴达木盆地深层含钾卤水成矿与利用研究[M]. 武汉: 中国地质大学出版社, 2021.10: 6-7.LI H P, HOU X H, PAN T, et al. Mineralization and utilization of deep potassium-bearing brine in the Qaidam Basin [M]. Wuhan: ChinaUniversity of Geosciences , 2021.10: 6-7.

    LI H P, HOU X H, PAN T, et al. Mineralization and utilization of deep potassium-bearing brine in the Qaidam Basin [M]. Wuhan: ChinaUniversity of Geosciences , 2021.10: 6-7.

    [4]

    李洪普, 郑绵平, 侯献华, 等. 柴达木黑北凹地早更新世新型砂砾层卤水水化学特征与成因[J]. 地球科学, 2014, 39(10):1333-1342.LI H P, ZHENG M P, HOU X H, et al. Chemical characteristics and genesis of the brine in the early Pleistocene new gravel layer in the Heibei depression of Qaidam[J]. Earth Science, 2014, 39(10):1333-1342.

    LI H P, ZHENG M P, HOU X H, et al. Chemical characteristics and genesis of the brine in the early Pleistocene new gravel layer in the Heibei depression of Qaidam[J]. Earth Science, 2014, 39(10):1333-1342.

    [5]

    李建森, 李廷伟, 彭喜明, 等. 柴达木盆地西部第三系油田水水文地球化学特征[J]. 石油与天然气地质, 2014, 35(1):50-55.LI J S, LI T W, PENG X M, et al. Hydrogeochemical characteristics of tertiary oilfield water in western Qaidam Basin[J]. Petroleum and Natural Gas Geology, 2014, 35(1):50-55. doi: 10.11743/ogg20140107

    LI J S, LI T W, PENG X M, et al. Hydrogeochemical characteristics of tertiary oilfield water in western Qaidam Basin[J]. Petroleum and Natural Gas Geology, 2014, 35(1):50-55. doi: 10.11743/ogg20140107

    [6]

    靳芳, 李洪普, 常东海. 柴达木盆地南翼山背斜构造区卤水自然蒸发实验[J]. 无机盐工业, 2021, 53(11):86-91.JIN F, LI H P, CHANG D H. Natural evaporation experiment of brine in the south wing mountain anticlinal structural area of Qaidam Basin[J]. Inorganic Salt Industry, 2021, 53(11):86-91.

    JIN F, LI H P, CHANG D H. Natural evaporation experiment of brine in the south wing mountain anticlinal structural area of Qaidam Basin[J]. Inorganic Salt Industry, 2021, 53(11):86-91.

    [7]

    刘颖, 王云生, 乜贞,等. 柴西深层地下卤水资源及其综合利用研究进展[J]. 无机盐工业, 2018, 50(1): 12-18.LIU Y, WANG Y S, NIE Z, et al. Research progress in deep underground brine resources and comprehensive utilization in western Qaidam [J]. Inorganic Salt Industry, 2018, 50 (1): 12-18.

    LIU Y, WANG Y S, NIE Z, et al. Research progress in deep underground brine resources and comprehensive utilization in western Qaidam [J]. Inorganic Salt Industry, 2018, 50 (1): 12-18.

    [8]

    彭玲玲, 魏学斌, 赵为永, 等. 黑北凹地富钾地下卤水自然蒸发实验研究[J]. 无机盐工业, 2019, 51(6):11-16.PENG L L, WEI X B, ZAO W Y, et al. Experimental study on natural evaporation of potassium-rich underground brine in Heibei depression[J]. Inorganic Salt Industry, 2019, 51(6):11-16.

    PENG L L, WEI X B, ZAO W Y, et al. Experimental study on natural evaporation of potassium-rich underground brine in Heibei depression[J]. Inorganic Salt Industry, 2019, 51(6):11-16.

    [9]

    牛自得, 陈芳琴, 李宝存, 等. 水盐体系相图及应用[M]. 天津: 天津大学出版社, 2002.NIU Z D, CHEN F Q, LI B C, et al. Phase diagram of water-salt system and its application [M]. Tianjin: Tianjin University Press, 2002.

    NIU Z D, CHEN F Q, LI B C, et al. Phase diagram of water-salt system and its application [M]. Tianjin: Tianjin University Press, 2002.

    [10]

    陈敬清, 刘子琴, 房春晖, 等. 盐湖卤水的蒸发结晶过程[J]. 盐湖研究, 1994, 2(1):43-51.CHEN J Q, LIU Z Q, FANG C H, et al. Evaporative crystallization process of salt lake brine[J]. Salt Lake Research, 1994, 2(1):43-51.

    CHEN J Q, LIU Z Q, FANG C H, et al. Evaporative crystallization process of salt lake brine[J]. Salt Lake Research, 1994, 2(1):43-51.

    [11]

    杨国彬, 杨建元, 李陇岗, 等. 智利Maricunga盐湖模拟卤水25 ℃等温蒸发实验研究[J]. 盐业与化工, 2012, 41(6):4-8.YANG G B, YANG J Y, LI L G, et al. Experimental study on 25 ℃ isothermal evaporation of simulated brine from Maricunga salt lake in Chile[J]. Salt and Chemical Industry, 2012, 41(6):4-8.

    YANG G B, YANG J Y, LI L G, et al. Experimental study on 25 ℃ isothermal evaporation of simulated brine from Maricunga salt lake in Chile[J]. Salt and Chemical Industry, 2012, 41(6):4-8.

  • 加载中

(5)

(4)

计量
  • 文章访问数:  186
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2023-03-11
刊出日期:  2024-08-25

目录