2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation
-
摘要:
这是一篇矿物加工工程领域的论文。对于蛇纹石型硫化矿的浮选,由于蛇纹石容易泥化,会恶化硫化矿的浮选。为了解决这一问题,本文首次使用2-羟基膦酰基乙酸(HPAA)来消除蛇纹石对黄铜矿浮选的负面影响。本文通过微浮选实验、浊度实验、Zeta电位测试、吸附量测试和XPS测试来研究HPAA在黄铜矿/蛇纹石浮选体系中的影响以及作用机理。实验表明,蛇纹石带正电,黄铜矿带负电,由于静电吸引作用,蛇纹石细泥会吸附在黄铜矿的表面,从而抑制黄铜矿的浮选。加入HPAA后,黄铜矿的浮选回收率由47.85%提高到92.44%。其机理是HPAA与蛇纹石的Mg2+发生了化学吸附,显著降低蛇纹石表面电位,使矿物颗粒产生斥力作用,从而恢复黄铜矿的可浮性。
Abstract:This is an article in the field of mineral processing engineering. For the flotation of sulfide ores whose gangue mineral is serpentine, serpentine can deteriorate the flotation of sulfide ores due to its easy mudification. To solve this problem, 2-hydroxyphosphonoacetic acid (HPAA) was used for the first time in this paper to eliminate the negative effect of serpentine on chalcopyrite flotation. In this article, the effect of HPAA on chalcopyrite/serpentine flotation system and the mechanism of action were investigated by microflotation test, turbidity test, zeta potential test, adsorption amount test and XPS test. The tests showed that serpentine is positively charged and chalcopyrite is negatively charged. Due to the electrostatic attraction, serpentine slime will adsorb on the surface of chalcopyrite, thus inhibiting the flotation of chalcopyrite. After adding HPAA, the flotation recovery of chalcopyrite was increased from 47.85% to 92.44%. The mechanism was that HPAA chemisorbed with Mg2+ of serpentine, which significantly reduced the surface potential of serpentine and caused repulsive effect on mineral particles, thus recovering the floatability of chalcopyrite.
-
Key words:
- Mineral processing engineering /
- Serpentine /
- Chalcopyrite /
- HPAA /
- Flotation
-
-
表 1 蛇纹石化学多元素分析/%
Table 1. Chemical multi-element analysis of serpentine
MgO SiO2 Al2O3 CaO Fe2O3 其他 39.38 53.55 0.11 0.61 1.05 5.3 表 2 黄铜矿化学多元素分析/%
Table 2. Chemical multi-element analysis of chalcopyrite
Cu Fe S Ni Al 其他 33.24 29.29 32.39 0.015 0.144 5.06 表 3 矿样表面原子浓度/%
Table 3. Atomic concentration on the surface of the mineral samples
名称 C 1s O 1s Si 2p Mg 1s P 2s 蛇纹石 8.09 52.98 15.73 23.20 - 蛇纹石+HPAA 9.62 53.38 14.22 22.36 0.42 黄铜矿 24.97 25.07 - - - 黄铜矿+HPAA 25.03 24.97 - - - -
[1] 张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4):13-20.ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.
ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.
[2] 谢杰, 胡春梅. 国内外硫化铜镍矿选矿现状及未来发展方向[J]. 矿产保护与利用, 2018(5):143-150.XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.
XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.
[3] 贾木欣, 孙传尧, 费涌初, 等. 金川矿石中脉石矿物易浮原因的探讨[J]. 矿冶, 2007(3):95-100.JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.
JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.
[4] 李锐, 都兴红, 邓水林, 等. 含镍蛇纹石浮选降镁实验研究[J]. 矿产综合利用, 2013(4):17-21.LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.
LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.
[5] 陈文亮, 方夕辉, 张帅, 等. 某低品位难选铜镍硫化矿高效降镁与铜镍分离[J]. 有色金属工程, 2014, 4(6):48-52.CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.
CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.
[6] 胡聪, 陈伟, 许鹏云. 酸性体系中蛇纹石矿泥的抑制及其对硫化铜镍矿浮选的影响[J]. 中国有色金属学报, 2021, 31(1):211-221.HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.
HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.
[7] 杜文平. 微细粒矿物浮选研究进展[J]. 铜业工程, 2017(2):63-68.DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.
DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.
[8] 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.
ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.
[9] 卢毅屏, 丁鹏, 冯其明, 等. 不同结构的磷酸盐对蛇纹石的分散作用[J]. 中南大学学报, 2011, 42(12):3599-3604.LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.
LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.
[10] 李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用机理分析[J]. 矿产综合利用, 2016(4):52-55LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.
LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.
[11] 李小黎, 张其东, 王雷, 等. 六偏磷酸钠在镍黄铁矿/蛇纹石浮选体系的作用研究[J]. 矿产综合利用, 2021, 41(2):52-57.LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.
LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.
[12] 冯博, 冯其明, 卢毅屏. 羧甲基纤维素在蛇纹石/黄铁矿浮选体系中的分散机理[J]. 中南大学学报(自然科学版), 2013, 44(7):2644-2649.FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.
FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.
[13] 胡家城, 石晴, 荀骆冰, 等. 碳酸根和硫酸根对蛇纹石和黄铜矿矿浆流变性和浮选的影响[J]. 有色金属工程, 2020, 10(10):88-94.HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.
HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.
[14] 高佳齐, 罗立群, 彭铁锋, 等. 利用氟化钠消除蛇纹石对黄铁矿浮选不利影响的机理研究[J]. 化工矿物与加工, 2021, 50(7):31-34.GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.
GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.
[15] ZHOU X W, FENG B. The effect of polyether on the separation of pentlandite and serpentine[J]. Journal of Materials Research and Technology, 2015, 4(4):429-433. doi: 10.1016/j.jmrt.2015.02.002
[16] CAO J, TIAN X D, LUO Y C, et al. The effect of graphene oxide on the slime coatings of serpentine in the flotation of pentlandite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522:621-627.
[17] TANG X K, CHEN Y F. Using oxalic acid to eliminate the slime coatings of serpentine in pyrite flotation[J]. Minerals Engineering, 2020, 149.
[18] LIU D Z, ZHANG G F, CHEN Y F. Studies on the selective flotation of pyrite from fine serpentine by using citric acid as depressant[J]. Minerals Engineering, 2021, 165.
[19] 王洪岭. 羧化壳聚糖对镍黄铁矿/蛇纹石浮选体系的作用机理[J]. 矿产综合利用, 2018(3):112-116.WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.
WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.
[20] LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336:527-32. doi: 10.1016/j.powtec.2018.06.030
[21] 张育, 李本高, 张金锐. 2-羟基膦基乙酸的性能及应用研究[J]. 石油化工腐蚀与防护, 1996, 13(1):32-34.ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.
ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.
[22] 孙水裕, 王淀佐, 李柏淡. 硫化钠对黄铜矿无捕收剂浮选的影响[J]. 有色金属, 1992, 44(3):42-47.SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.
SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.
[23] 刘豹, 郝良影, 李彩霞. 蛇纹石对黄铜矿浮选影响的研究[J]. 非金属矿, 2016, 39(5):19-22.LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.
LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.
[24] FENG B, LU Y P, FENG Q M, et al. Mechanisms of surface charge development of serpentine mineral[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1123-1128. doi: 10.1016/S1003-6326(13)62574-1
[25] DEMADIS K D, PAPADAKI M, RAPTIS R G, et al. Corrugated, sheet-like architectures in layered alkaline-earth metal R, S-Hydroxyphosphonoacetate frameworks: applications for anticorrosion protection of metal surfaces[J]. Chem Mater, 2008, 20:4835-4846. doi: 10.1021/cm801004w
-