2-羟基膦酰基乙酸消除蛇纹石对黄铜矿浮选不利影响

姚冬冬, 焦芬, 贾文浩, 魏茜, 潘祖超, 熊晶晶. 2-羟基膦酰基乙酸消除蛇纹石对黄铜矿浮选不利影响[J]. 矿产综合利用, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001
引用本文: 姚冬冬, 焦芬, 贾文浩, 魏茜, 潘祖超, 熊晶晶. 2-羟基膦酰基乙酸消除蛇纹石对黄铜矿浮选不利影响[J]. 矿产综合利用, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001
YAO Dongdong, JIAO Fen, JIA Wenhao, WEI Qian, PAN Zuchao, XIONG Jingjing. 2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001
Citation: YAO Dongdong, JIAO Fen, JIA Wenhao, WEI Qian, PAN Zuchao, XIONG Jingjing. 2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001

2-羟基膦酰基乙酸消除蛇纹石对黄铜矿浮选不利影响

详细信息
    作者简介: 姚冬冬(1996-),男,硕士在读,主要从事矿物浮选研究
  • 中图分类号: TD952

2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation

  • 这是一篇矿物加工工程领域的论文。对于蛇纹石型硫化矿的浮选,由于蛇纹石容易泥化,会恶化硫化矿的浮选。为了解决这一问题,本文首次使用2-羟基膦酰基乙酸(HPAA)来消除蛇纹石对黄铜矿浮选的负面影响。本文通过微浮选实验、浊度实验、Zeta电位测试、吸附量测试和XPS测试来研究HPAA在黄铜矿/蛇纹石浮选体系中的影响以及作用机理。实验表明,蛇纹石带正电,黄铜矿带负电,由于静电吸引作用,蛇纹石细泥会吸附在黄铜矿的表面,从而抑制黄铜矿的浮选。加入HPAA后,黄铜矿的浮选回收率由47.85%提高到92.44%。其机理是HPAA与蛇纹石的Mg2+发生了化学吸附,显著降低蛇纹石表面电位,使矿物颗粒产生斥力作用,从而恢复黄铜矿的可浮性。

  • 加载中
  • 图 1  HPAA的分子结构式

    Figure 1. 

    图 2  黄铜矿和蛇纹石的XRD

    Figure 2. 

    图 3  浮选实验流程

    Figure 3. 

    图 4  矿浆pH值在不同条件下对黄铜矿和蛇纹石浮选回收率的影响

    Figure 4. 

    图 5  蛇纹石的含量对黄铜矿浮选回收率的影响

    Figure 5. 

    图 6  抑制剂对黄铜矿浮选回收率的影响

    Figure 6. 

    图 7  HPAA对矿浆浊度的影响

    Figure 7. 

    图 8  不同条件下Z-200在矿物表面的吸附量

    Figure 8. 

    图 9  不同pH值条件下HPAA对黄铜矿和蛇纹石的影响

    Figure 9. 

    图 10  蛇纹石表面Mg 1 s高分辨XPS光谱(a)和Si 2p高分辨XPS光谱(b)

    Figure 10. 

    图 11  HPAA实现黄铜矿与蛇纹石分离的作用机理

    Figure 11. 

    表 1  蛇纹石化学多元素分析/%

    Table 1.  Chemical multi-element analysis of serpentine

    MgOSiO2Al2O3CaOFe2O3其他
    39.3853.550.110.611.055.3
    下载: 导出CSV

    表 2  黄铜矿化学多元素分析/%

    Table 2.  Chemical multi-element analysis of chalcopyrite

    CuFeSNiAl其他
    33.2429.2932.390.0150.1445.06
    下载: 导出CSV

    表 3  矿样表面原子浓度/%

    Table 3.  Atomic concentration on the surface of the mineral samples

    名称C 1sO 1sSi 2pMg 1sP 2s
    蛇纹石8.0952.9815.7323.20-
    蛇纹石+HPAA9.6253.3814.2222.360.42
    黄铜矿24.9725.07---
    黄铜矿+HPAA25.0324.97---
    下载: 导出CSV
  • [1]

    张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4):13-20.ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.

    ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.

    [2]

    谢杰, 胡春梅. 国内外硫化铜镍矿选矿现状及未来发展方向[J]. 矿产保护与利用, 2018(5):143-150.XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.

    XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.

    [3]

    贾木欣, 孙传尧, 费涌初, 等. 金川矿石中脉石矿物易浮原因的探讨[J]. 矿冶, 2007(3):95-100.JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.

    JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.

    [4]

    李锐, 都兴红, 邓水林, 等. 含镍蛇纹石浮选降镁实验研究[J]. 矿产综合利用, 2013(4):17-21.LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.

    LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.

    [5]

    陈文亮, 方夕辉, 张帅, 等. 某低品位难选铜镍硫化矿高效降镁与铜镍分离[J]. 有色金属工程, 2014, 4(6):48-52.CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.

    CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.

    [6]

    胡聪, 陈伟, 许鹏云. 酸性体系中蛇纹石矿泥的抑制及其对硫化铜镍矿浮选的影响[J]. 中国有色金属学报, 2021, 31(1):211-221.HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.

    HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.

    [7]

    杜文平. 微细粒矿物浮选研究进展[J]. 铜业工程, 2017(2):63-68.DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.

    DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.

    [8]

    赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.

    ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.

    [9]

    卢毅屏, 丁鹏, 冯其明, 等. 不同结构的磷酸盐对蛇纹石的分散作用[J]. 中南大学学报, 2011, 42(12):3599-3604.LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.

    LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.

    [10]

    李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用机理分析[J]. 矿产综合利用, 2016(4):52-55LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.

    LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.

    [11]

    李小黎, 张其东, 王雷, 等. 六偏磷酸钠在镍黄铁矿/蛇纹石浮选体系的作用研究[J]. 矿产综合利用, 2021, 41(2):52-57.LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.

    LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.

    [12]

    冯博, 冯其明, 卢毅屏. 羧甲基纤维素在蛇纹石/黄铁矿浮选体系中的分散机理[J]. 中南大学学报(自然科学版), 2013, 44(7):2644-2649.FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.

    FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.

    [13]

    胡家城, 石晴, 荀骆冰, 等. 碳酸根和硫酸根对蛇纹石和黄铜矿矿浆流变性和浮选的影响[J]. 有色金属工程, 2020, 10(10):88-94.HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.

    HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.

    [14]

    高佳齐, 罗立群, 彭铁锋, 等. 利用氟化钠消除蛇纹石对黄铁矿浮选不利影响的机理研究[J]. 化工矿物与加工, 2021, 50(7):31-34.GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.

    GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.

    [15]

    ZHOU X W, FENG B. The effect of polyether on the separation of pentlandite and serpentine[J]. Journal of Materials Research and Technology, 2015, 4(4):429-433. doi: 10.1016/j.jmrt.2015.02.002

    [16]

    CAO J, TIAN X D, LUO Y C, et al. The effect of graphene oxide on the slime coatings of serpentine in the flotation of pentlandite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522:621-627.

    [17]

    TANG X K, CHEN Y F. Using oxalic acid to eliminate the slime coatings of serpentine in pyrite flotation[J]. Minerals Engineering, 2020, 149.

    [18]

    LIU D Z, ZHANG G F, CHEN Y F. Studies on the selective flotation of pyrite from fine serpentine by using citric acid as depressant[J]. Minerals Engineering, 2021, 165.

    [19]

    王洪岭. 羧化壳聚糖对镍黄铁矿/蛇纹石浮选体系的作用机理[J]. 矿产综合利用, 2018(3):112-116.WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.

    WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.

    [20]

    LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336:527-32. doi: 10.1016/j.powtec.2018.06.030

    [21]

    张育, 李本高, 张金锐. 2-羟基膦基乙酸的性能及应用研究[J]. 石油化工腐蚀与防护, 1996, 13(1):32-34.ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.

    ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.

    [22]

    孙水裕, 王淀佐, 李柏淡. 硫化钠对黄铜矿无捕收剂浮选的影响[J]. 有色金属, 1992, 44(3):42-47.SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.

    SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.

    [23]

    刘豹, 郝良影, 李彩霞. 蛇纹石对黄铜矿浮选影响的研究[J]. 非金属矿, 2016, 39(5):19-22.LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.

    LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.

    [24]

    FENG B, LU Y P, FENG Q M, et al. Mechanisms of surface charge development of serpentine mineral[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1123-1128. doi: 10.1016/S1003-6326(13)62574-1

    [25]

    DEMADIS K D, PAPADAKI M, RAPTIS R G, et al. Corrugated, sheet-like architectures in layered alkaline-earth metal R, S-Hydroxyphosphonoacetate frameworks: applications for anticorrosion protection of metal surfaces[J]. Chem Mater, 2008, 20:4835-4846. doi: 10.1021/cm801004w

  • 加载中

(11)

(3)

计量
  • 文章访问数:  169
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2021-12-19
刊出日期:  2024-10-25

目录