MO捕收剂对煤气化细渣浮选性能的影响

王鹏, 刘彦丽. MO捕收剂对煤气化细渣浮选性能的影响[J]. 矿产综合利用, 2024, 45(5): 9-14. doi: 10.3969/j.issn.1000-6532.2024.05.002
引用本文: 王鹏, 刘彦丽. MO捕收剂对煤气化细渣浮选性能的影响[J]. 矿产综合利用, 2024, 45(5): 9-14. doi: 10.3969/j.issn.1000-6532.2024.05.002
WANG Peng, LIU Yanli. Effect of MO Collector on Coal Gasification Fine Slag Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 9-14. doi: 10.3969/j.issn.1000-6532.2024.05.002
Citation: WANG Peng, LIU Yanli. Effect of MO Collector on Coal Gasification Fine Slag Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 9-14. doi: 10.3969/j.issn.1000-6532.2024.05.002

MO捕收剂对煤气化细渣浮选性能的影响

详细信息
    作者简介: 王鹏(1978-),男,讲师,研究方向为煤气化渣选矿
  • 中图分类号: TD94

Effect of MO Collector on Coal Gasification Fine Slag Flotation

  • 这是一篇矿物加工工程领域的文章。煤气化细渣的综合利用是现阶段的一大发展方向。煤气化细渣孔隙发达且含氧基团丰富,使得煤油等传统捕收剂难以回收其中的残炭。将油酸甲酯和煤油复配得到的药剂MO进行浮选实验,并通过激光粒度仪、红外光谱分析、接触角分析、XPS分峰拟合等手段进行机理探讨。结果表明,当MO药剂用量提高到16 kg/t时,尾矿烧失量降低到7.12%,可燃体回收率超过95.63%。MO药剂引入了极性基团酯基,其可以降低煤油表面的界面张力,增强捕收剂在水中的分散作用,从而增加残炭颗粒与捕收剂液滴的接触面积与碰撞概率,进而提高残炭颗粒的疏水性和可浮性。通过接触角分析不同药剂作用下残炭表面的疏水性,解释其与精矿产率的关系。通过XPS分析说明,MO与残炭表面的含氧官能团作用,能够在残炭的亲水位点形成有效的覆盖层,使得疏水部分朝外,降低了水化作用,增加了接触概率,增加该煤气化细渣的表面疏水性。MO药剂的使用为煤气化固体废弃物的综合利用提供了一种新途径。

  • 加载中
  • 图 1  CGFS的XRD

    Figure 1. 

    图 2  煤油对CGFS的浮选实验结果

    Figure 2. 

    图 3  MO药剂对CGFS的浮选实验结果

    Figure 3. 

    图 4  两种捕收剂在水溶液中的粒径分布

    Figure 4. 

    图 5  两种捕收剂剂的FT-IR

    Figure 5. 

    图 6  接触角测量结果

    Figure 6. 

    图 7  XPS的C1s分峰拟合

    Figure 7. 

    表 1  CGFS的粒度组成

    Table 1.  Particle size composition of CFFS

    粒径/mm产率/%烧失量/%筛上累计/%
    累计产率累计烧失量
    -0.5+0.2525.6046.8625.6046.86
    -0.25+0.12517.7835.5743.3742.23
    -0.125+0.07414.9455.6558.3245.67
    -0.074+0.0459.0560.0667.3747.60
    -0.04532.6339.74100.0045.04
    总计100.0045.04
    下载: 导出CSV

    表 2  CGFS的工业分析和元素分析

    Table 2.  Proximate and elementary analysis of CGFS

    工业分析/% 元素分析/%
    Mad LOIad Vad FCad C H O N S
    0.55 45.04 1.98 42.55 86.08 0.52 12.21 0.66 0.53
    注:Mad为CGFS空气干燥基的水分;LOIad为CGFS空气干燥基的烧失量;Vad为CGFS空气干燥基的挥发分;FCad为CGFS空气干燥基的固定碳。
    下载: 导出CSV

    表 3  含氧基团的含量及形式

    Table 3.  Content analysis of functional groups

    结合能/eV官能团含量/%
    UC煤油处理后MO处理后
    284.8C-C/C-H68.6974.8276.34
    286.1C-O14.8014.4512.45
    287.5C=O4.565.225.29
    289.0COO-11.955.515.92
    下载: 导出CSV
  • [1]

    程志红. “双碳目标”下表面改性与新型药剂在低阶煤浮选中的应用[J]. 矿产综合利用, 2022(2):15-21.CHENG Z H. Application of Surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003

    CHENG Z H. Application of Surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003

    [2]

    王学斌, 于伟, 张韬, 等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术, 2021, 27(3):61-69.WANG X, YU W, ZHANG T, et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology, 2021, 27(3):61-69.

    WANG X, YU W, ZHANG T, et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology, 2021, 27(3):61-69.

    [3]

    Guo F, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585:124148. doi: 10.1016/j.colsurfa.2019.124148

    [4]

    肖永丰. 粉煤灰提取氧化铝方法研究[J]. 矿产综合利用, 2020(4):156-162.XIAO Y F. Study on the methods of leaching alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    XIAO Y F. Study on the methods of leaching alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    [5]

    Cao X, Kong L, Bai J, et al. Effect of water vapor on viscosity behavior of coal slags with high silicon-aluminum level under gasification condition[J]. Fuel, 2020, 260:116351. doi: 10.1016/j.fuel.2019.116351

    [6]

    张旭, 于昭仪, 何亚群, 等. 吡啶类离子液体在褐煤反浮选中的应用[J]. 矿产综合利用, 2022(2):116-120.ZHANG X, YU S Y, HE Y Q, et al. Application of pyridyl ionic liquids in the reverse flotation of shengli lignite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):116-120. doi: 10.3969/j.issn.1000-6532.2022.02.021

    ZHANG X, YU S Y, HE Y Q, et al. Application of pyridyl ionic liquids in the reverse flotation of shengli lignite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):116-120. doi: 10.3969/j.issn.1000-6532.2022.02.021

    [7]

    卢天燊, 邓政斌, 刘志红, 等. 高灰难选煤泥分级浮选降灰实验研究[J]. 矿产综合利用, 2022(2):142-149.LU T J, DENG Z B, LIU Z H, et al. Experimental study on deashing of high ash and refractory coal slime by classification flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026

    LU T J, DENG Z B, LIU Z H, et al. Experimental study on deashing of high ash and refractory coal slime by classification flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026

    [8]

    张帅, 李亚, 牛艳萍, 等. 某片麻岩鳞片石墨矿浮选实验研究[J]. 矿产综合利用, 2022(2):111-115.ZHANG S, LI Y, NIU Y P, et al. Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):111-115. doi: 10.3969/j.issn.1000-6532.2022.02.020

    ZHANG S, LI Y, NIU Y P, et al. Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):111-115. doi: 10.3969/j.issn.1000-6532.2022.02.020

    [9]

    梁艳男, 王海楠, 周若谦, 等. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022(2):158-166.LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029

    LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029

    [10]

    朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    [11]

    胡俊阳. 北方某煤气化炉渣的综合利用研究[D]. 绵阳: 西南科技大学, 2018.HU J Y. Study on the comprehensive utilization of a coal gasification slag in the north[J]. Mianyang: Southwest University of Science and Technology, 2018.

    HU J Y. Study on the comprehensive utilization of a coal gasification slag in the north[J]. Mianyang: Southwest University of Science and Technology, 2018.

    [12]

    Wang W, Liu D, Tu Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel, 2020, 278:118195. doi: 10.1016/j.fuel.2020.118195

    [13]

    王晓波, 符剑刚, 赵迪, 等. 煤气化细渣载体浮选提质研究[J]. 煤炭工程, 53(1): 155-159.WANG X B, FU J G, ZHAO D, et al. Study on flotation and quality improvement of gasified fine slag carrier[J]. Coal Engineering, 53(1): 155-159

    WANG X B, FU J G, ZHAO D, et al. Study on flotation and quality improvement of gasified fine slag carrier[J]. Coal Engineering, 53(1): 155-159

    [14]

    Fan G, Zhang M, Peng W, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. Journal of Cleaner Production, 2021, 286:124943. doi: 10.1016/j.jclepro.2020.124943

    [15]

    Shi D, Zhang J, Hou X, et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of The Total Environment, 2022, 818:151856. doi: 10.1016/j.scitotenv.2021.151856

    [16]

    Zhou W, Jiang L, Liu X, et al. Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022: 128259.

    [17]

    包永红, 张义, 陈警卫, 等. 脉石矿物在细粒煤浮选过程的夹带回收特性研究[J]. 矿产综合利用, 2021(6):20-25.BAO Y H, ZHANG Y, CHEN J W, et al. Study on entrainment recovery characteristics of gangue minerals in flotation process of fine coal[J]. Multipurpose Utilization of Mineral Resources, 2021(6):20-25. doi: 10.3969/j.issn.1000-6532.2021.06.004

    BAO Y H, ZHANG Y, CHEN J W, et al. Study on entrainment recovery characteristics of gangue minerals in flotation process of fine coal[J]. Multipurpose Utilization of Mineral Resources, 2021(6):20-25. doi: 10.3969/j.issn.1000-6532.2021.06.004

    [18]

    Miao Z, Guo Z, Qiu G, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50:101585. doi: 10.1016/j.jcou.2021.101585

  • 加载中

(7)

(3)

计量
  • 文章访问数:  213
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2022-06-01
刊出日期:  2024-10-25

目录