-
摘要:
这是一篇矿物加工工程领域的论文。针对湖南某铍矿含BeO 0.47%、CaF2 44.86%,含铍矿物为金绿宝石,主要脉石矿物为绿泥石、云母、方解石、白云石等,铍矿物嵌布粒度较细,与绿泥石、方解石等脉石矿物共生密切,分选难度较大。基于金绿宝石与萤石以及与主要脉石矿物的可浮性差异,实验采用原矿浮选脱除硫化矿后—优先浮选萤石—浮选尾矿脱泥后反浮选脉石矿物的工艺流程处理该矿。在磨矿细度为-0.074 mm 80%的条件下,采用组合捕收剂丁基黄药+丁铵黑药+乙硫氮浮选脱除硫化矿,然后利用组合捕收剂油酸钠+氧化石蜡皂浮选萤石得到含CaF2 96.32%、回收率为70.34%的萤石精矿,浮选尾矿脱泥后反浮选脉石矿物,可获得含BeO 1.57%、回收率为67.95%的铍精矿。铍精矿后续可采用冶金方法提取获得氧化铍产品。该工艺实现了对金绿宝石型铍矿和萤石矿物的综合回收,为同类型铍矿的开发利用提供参考。
Abstract:This is an article in the field of mineral processing engineering. The beryllium ore in Hunan Province contains 0.47% BeO and 44.86% CaF2. The beryllium ore is chrysoberyl. The main gangue minerals are chlorite, mica, calcite, dolomite, etc. The disseminated particle size of beryllium ores is relatively fine, closely associated with chlorite, calcite, etc. So it is difficult to beneficiate. The beneficiation process flow is adopted by flotation of the sulphide ore first, then preferential flotation of fluorite, and the last reverse flotation of gangue minerals after flotation tailings deslimed. At the condition of the grinding fineness -0.074 mm accounted for 80%, the combined collectors of butylxanthate + ammonium dibutyldithiophosphate + sodium diethyldithiocarbamate for flotation were used to remove sulfide ores. Then fluorite concentrate with CaF2 grade of 96.32% and recovery rate of 70.34% were obtained by flotation of fluorite with the combined collectors oxidized paraffinum sodium salt + sodium oleate. After the flotation tailings are deslimed, reverse flotation of gangue minerals is adopted and the beryllium concentrate with BeO grade of 1.57% and recovery rate of 67.95% is obtained. The subsequent beryllium concentrate can be extracted by metallurgical method to obtain beryllium oxide products. This process realizes the multipurpose recovery of beryllium ores of chrysoberyl type and fluorite ores, and provides a reference for the development and utilization of the same type of beryllium ores.
-
Key words:
- Mineral processing engineering /
- Chrysoberyl /
- Fluorite /
- Flotation /
- Reverse flotation /
- Desliming
-
-
表 1 矿样主要化学组分分析结果/%
Table 1. Results of main chemical component analysis of ore samples
BeO F CaO MgO Al2O3 SiO2 K2O 0.47 22.80 28.31 9.13 15.33 12.07 2.19 表 2 矿样矿物组成及含量分析/%
Table 2. Results of mineral composition and content analysis of ore samples
萤石 金绿宝石 绿泥石 云母 白云石 方解石 44.86 2.31 21.91 18.22 3.02 4.13 氟镁石 蒙脱石 石英 尖晶石 硬锰矿 褐铁矿 1.61 1.12 0.73 0.52 0.46 0.34 方铅矿 闪锌矿 黄铜矿 红柱石 透辉石 其他 0.16 0.12 0.04 0.13 0.12 0.20 表 3 磨矿细度为-0.074 mm 80%实验结果
Table 3. Test results of grinding fineness of -0.074 mm accounting for 80%
产品名称 产率/% 品位/% 回收率/% BeO CaF2 BeO CaF2 硫化矿 9.86 0.29 40.17 6.02 8.83 萤石粗精矿 57.41 0.31 67.31 37.47 86.14 铍粗精矿 32.73 0.82 6.89 56.51 5.03 原矿 100.00 0.47 44.86 100.00 100.00 表 4 萤石浮选抑制剂种类实验结果
Table 4. Test results of types of fluorite flotation inhibitors
抑制剂种类与
用量/(g/t)产品名称 产率/% 品位/% 回收率/% BeO CaF2 BeO CaF2 水玻璃2 000 萤石粗精矿 62.69 0.31 68.54 38.56 93.89 铍粗精矿 37.31 0.83 7.49 61.44 6.11 给矿 100.00 0.50 45.76 100.00 100.00 水玻璃1 000
淀粉800萤石粗精矿 62.92 0.32 64.51 40.13 88.72 铍粗精矿 37.08 0.81 13.92 59.87 11.28 给矿 100.00 0.50 45.75 100.00 100.00 酸化水玻璃
1 000CMC 300萤石粗精矿 75.11 0.43 58.22 64.63 95.29 铍粗精矿 24.89 0.71 8.69 35.37 4.71 给矿 100.00 0.50 45.89 100.00 100.00 单宁酸500酸化
水玻璃1 000萤石粗精矿 69.02 0.42 63.05 60.88 93.24 铍粗精矿 30.98 0.64 10.02 39.12 6.76 给矿 100.00 0.50 45.93 100.00 100.00 表 5 萤石浮选捕收剂种类实验结果
Table 5. Test results of collector types of fluorite flotation
捕收剂种类 产品名称 产率/% 品位/% 作业回收率/% BeO CaF2 BeO CaF2 油酸钠 萤石粗精矿 70.02 0.35 62.27 49.02 95.38 铍粗精矿 29.98 0.85 7.04 50.98 4.62 给矿 100.00 0.50 45.71 100.00 100.00 氧化石蜡皂 萤石粗精矿 60.56 0.30 69.27 36.25 91.53 铍粗精矿 39.44 0.81 9.84 63.75 8.47 给矿 100.00 0.50 45.83 100.00 100.00 塔尔油 萤石粗精矿 62.86 0.31 65.51 39.31 90.35 铍粗精矿 37.14 0.81 11.84 60.69 9.65 给矿 100.00 0.50 45.58 100.00 100.00 表 6 萤石浮选捕收剂配比实验结果
Table 6. Test results of collector dosage proportion of fluorite flotation
捕收剂配比
(油酸钠∶
氧化石蜡皂)产品名称 产率/% 品位/% 作业回收率/% BeO CaF2 BeO CaF2 1∶2 萤石粗精矿 61.86 0.31 68.09 38.01 91.67 铍粗精矿 38.14 0.82 10.04 61.99 8.33 给矿 100.00 0.50 45.95 100.00 100.00 1∶1 萤石粗精矿 62.69 0.31 68.54 38.56 93.89 铍粗精矿 37.31 0.83 7.49 61.44 6.11 给矿 100.00 0.50 45.76 100.00 100.00 2∶1 萤石粗精矿 64.23 0.31 66.26 40.14 94.50 铍粗精矿 35.77 0.83 6.92 59.86 5.50 给矿 100.00 0.50 45.03 100.00 100.00 表 7 脱泥实验结果
Table 7. Test results of desliming
产品名称 产率/% BeO品位/% BeO回收率/% +0.031 mm 58.67 0.86 60.48 沉砂 30.87 0.98 36.26 矿泥 10.46 0.26 3.26 给矿 100.00 0.83 100.00 表 8 反浮脉石矿物实验结果
Table 8. Test results of reverse floating gangue minerals
产品名称 产率/% BeO品位/% BeO回收率/% 精矿 47.61 1.57 82.63 尾矿 52.39 0.30 17.37 给矿 100.00 0.90 100.00 表 9 全流程实验结果
Table 9. Test results of full process
产品名称 产率/% 品位/% 回收率/% BeO CaF2 BeO CaF2 铍精矿 20.16 1.57 21.91 67.95 9.85 萤石精矿 32.76 0.039 96.32 2.74 70.34 尾矿 47.08 0.29 18.88 29.31 19.81 原矿 100.00 0.47 44.86 100.00 100.00 -
[1] 李宏, 谭秀民, 张秀峰, 等. 铍资源现状及其选冶技术进展[J]. 有色金属科学与工程, 2022, 13(4):44-53.LI H, TAN X M, ZHANG X F, et al. Present situation of beryllium resources and its progress of processing technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4):44-53.
LI H, TAN X M, ZHANG X F, et al. Present situation of beryllium resources and its progress of processing technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4):44-53.
[2] 赖杨, 邓伟. 川西九龙打枪沟锂铍矿石特征及其铷元素赋存状态和分布规律研究[J]. 矿产综合利用, 2022(5): 185-192.LAI Y , DENG W. Characteristics of lithium beryllium ore and occurrence and distribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan [J]. Multipurpose Utilization of Mineral Resources, 2022(5): 185-192.
LAI Y , DENG W. Characteristics of lithium beryllium ore and occurrence and distribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan [J]. Multipurpose Utilization of Mineral Resources, 2022(5): 185-192.
[3] 纪国平, 王亚洲. 低温反浮选绿柱石实验研究[J]. 新疆有色金属, 2020(2):20-24.JI G P, WANG Y Z. Experimental study on low temperature reverse flotation of beryl[J]. Xinjiang Nonferrous metals, 2020(2):20-24.
JI G P, WANG Y Z. Experimental study on low temperature reverse flotation of beryl[J]. Xinjiang Nonferrous metals, 2020(2):20-24.
[4] 芮海锋. 金绿宝石型铍矿中铍的提取工艺研究[D]. 湘潭: 湘潭大学, 2017.RUI H F. Extraction of beryllium from chrysoberylore[D]. Xiangtan: Xiangtan University, 2017.
RUI H F. Extraction of beryllium from chrysoberylore[D]. Xiangtan: Xiangtan University, 2017.
[5] 邓超翰. 一种从含锂的金绿宝石型铍矿中取锂铍的工艺[D]. 湘潭: 湘潭大学, 2018.DENG C H. Extraction of lithium and beryllium from lithium-containing chrysoberyl beryllium ore [D]. Xiangtan: Xiangtan University, 2018.
DENG C H. Extraction of lithium and beryllium from lithium-containing chrysoberyl beryllium ore [D]. Xiangtan: Xiangtan University, 2018.
[6] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987: 271-274.HU X G. Beneficiation of nonferrous metal sulphide ore [M]. Beijing: Metallurgical Industry Press, 1987: 271-274.
HU X G. Beneficiation of nonferrous metal sulphide ore [M]. Beijing: Metallurgical Industry Press, 1987: 271-274.
[7] 罗红莹. 油酸钠体系中锡石与绿泥石浮选选择性抑制作用研究[D]. 昆明: 昆明理工大学, 2020.LUO H Y. Study on selective inhibition of cassiterite and chlorite flotation in sodium oleatesystem[D]. Kunming: Kunming University of Science and Technology, 2015.
LUO H Y. Study on selective inhibition of cassiterite and chlorite flotation in sodium oleatesystem[D]. Kunming: Kunming University of Science and Technology, 2015.
[8] 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002
ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002
[9] 陈建建. 含云母方解石型萤石浮选实验研究[D]. 徐州: 中国矿业大学, 2015.CHEN J J. Experimental research on flotation of micaceous calcite-typefluorite[D]. Xuzhou: China University of Mining and Technolog, 2015.
CHEN J J. Experimental research on flotation of micaceous calcite-typefluorite[D]. Xuzhou: China University of Mining and Technolog, 2015.
[10] 方霖, 郭珍旭, 刘长淼, 等. 云母矿物浮选研究进展[J]. 中国矿业, 2015, 24(3):131-136.FANG L, GUO Z X, LIU C M, et al. Research progress of mica flotation[J]. China Mining Magazine, 2015, 24(3):131-136.
FANG L, GUO Z X, LIU C M, et al. Research progress of mica flotation[J]. China Mining Magazine, 2015, 24(3):131-136.
[11] 林东. 碳酸盐型萤石矿浮选选择性抑制及机理研究[D]. 贵州: 贵州大学, 2017.LIN D. Study on selective inhibition and mechanism of flotation of carbonate fluorite ore [D]. Guizhou: Guizhou University, 2017.
LIN D. Study on selective inhibition and mechanism of flotation of carbonate fluorite ore [D]. Guizhou: Guizhou University, 2017.
[12] 黄俊玮, 张成强, 郭珍旭. 萤石矿浮选研究进展[J]. 现代矿业, 2017, 5(5):129-132+140.HUANG J W, ZHAGN C Q, GUO Z X. Research progress of fluorite flotation[J]. Modern Mining, 2017, 5(5):129-132+140. doi: 10.3969/j.issn.1674-6082.2017.05.029
HUANG J W, ZHAGN C Q, GUO Z X. Research progress of fluorite flotation[J]. Modern Mining, 2017, 5(5):129-132+140. doi: 10.3969/j.issn.1674-6082.2017.05.029
[13] 米丽平. 从碎云母矿尾矿中回收云母的实验研究[D]. 唐山: 河北理工大学, 2005.MI L P. Experimental study on recovery of mica from crushed mica tailings[D]. Tangshan: Hebei University of Science and Technology.
MI L P. Experimental study on recovery of mica from crushed mica tailings[D]. Tangshan: Hebei University of Science and Technology.
[14] 张先华, 张汉忠, 刘勇, 等. 一种从金绿宝石铍矿石提取氧化铍的选冶联合方法: CN201610054060.0 [P]. 2016-01-27.ZHANG X H, ZHANG H Z, LIU Y, et al. A combined method of beneficiation and metallurgy for extracting beryllium oxide from chrysoberyl ore: CN201610054060.0 [P]. 2016-01-27.
ZHANG X H, ZHANG H Z, LIU Y, et al. A combined method of beneficiation and metallurgy for extracting beryllium oxide from chrysoberyl ore: CN201610054060.0 [P]. 2016-01-27.
-