两步还原钒渣过程中熔渣的黏度与结构特性

孙晓磊, 张灵犀, 陈敏. 两步还原钒渣过程中熔渣的黏度与结构特性[J]. 矿产综合利用, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006
引用本文: 孙晓磊, 张灵犀, 陈敏. 两步还原钒渣过程中熔渣的黏度与结构特性[J]. 矿产综合利用, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006
SUN Xiaolei, ZHANG Lingxi, CHEN Min. Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006
Citation: SUN Xiaolei, ZHANG Lingxi, CHEN Min. Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006

两步还原钒渣过程中熔渣的黏度与结构特性

  • 基金项目: 国家自然科学基金项目(51774073,52174301)
详细信息
    作者简介: 孙晓磊(1994-)男,硕士研究生,研究方向为钒渣的综合利用
    通讯作者: 陈敏(1969-)男,教授,博士生导师,研究方向为冶金二次资源精细化利用。
  • 中图分类号: TF646

Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags

More Information
  • 这是一篇冶金工程领域的论文。针对当前钒铁生产面临环境污染严重、流程冗长以及能耗较高等一系列问题,拟利用光伏硅片切割废料和铝灰分别作为预还原和终还原阶段的还原剂,对钒渣进行两步还原直接制备钒铁合金,研究了两步还原反应过程中对应渣系的黏度和熔体结构的演变规律。结果表明,1 873 K时,对应预还原过程的FeO-V2O3-Cr2O3-MnO-SiO2-TiO2-CaO渣系,随着渣中FeO组元含量的减少和SiO2组元含量的增加,铁铬尖晶石逐渐分解,影响熔体结构的主要因素由渣中FeO含量的变化转变为SiO2含量的变化,导致结构复杂度由0.176增至2.517,相应地,渣系黏度由0.092 Pa·s增至0.476 Pa·s;对应终还原过程的FeO-Cr2O3-MnO-V2O3-Al2O3-SiO2-TiO2-CaO渣系,随着渣中FeO、Cr2O3、MnO、V2O3组元含量的减少和Al2O3组元含量的增加,锰铬尖晶石逐渐分解,渣系由固液混合相转变为单一液相,影响熔体结构的主要因素为渣中Al2O3含量的变化,渣系由预还原阶段硅酸盐为主的熔体结构转变为终还原阶段铝硅酸盐为主的熔体结构,结构复杂度由0.252增至2.248,相应地,渣系黏度由0.091 Pa·s增至0.372 Pa·s。

  • 加载中
  • 图 1  S1~S6在1 873 K时急冷后的XRD

    Figure 1. 

    图 2  1 873 K时急冷渣样的SEM

    Figure 2. 

    图 3  不同渣样黏度随温度的变化曲线

    Figure 3. 

    图 4  急冷渣样的拉曼光谱Gaussian分峰拟合曲线

    Figure 4. 

    表 1  SCW、铝灰、钒渣的化学成分/%

    Table 1.  Chemical composition of SCW, aluminium ash and vanadium slags

    名称AlAl2O3SiO2SiCSiFeOCr2O3MnOV2O3TiO2
    SCW--14.925.859.3-----
    铝灰39.348.811.9-------
    钒渣--19.4--41.24.911.114.29.2
    下载: 导出CSV

    表 2  实验渣样化学成分/%

    Table 2.  Chemical composition of test slags

    名称FeOCr2O3MnOV2O3SiO2TiO2CaOAl2O3
    S136511131898-
    S2255111426910-
    S3115111637911-
    S463792363511
    S5--792463717
    S6----2563732
    下载: 导出CSV

    表 3  渣样各结构单元拉曼特征峰位置

    Table 3.  Raman characteristic peak position of each structural unit of test slags

    名称 S1 S2 S3 S4 S5 S6 结构单元
    拉曼位移(cm-1) - - - 510 540 511 Al-O-Al弯曲振动[12]
    580 580 575 579 602 567 Si-O-Si弯曲振动[15]
    - 629 630 - - - FeCr2O4F2g(3)振动[16]
    - - - 665 - - MnCr2O4A1g振动[17]
    675 - - - - - FeCr2O4A1g振动[17]
    710 710 709 710 690 - V-O3-V弯曲振动[18]
    - - - 770 762 753 Al-O-对称伸缩振动[19]
    - - - - 820 843 Al-O-Si伸缩振动[20]
    872 851 849 853 861 - [SiO4]4-中Si-O-对称伸缩振动[19-20]
    919 906 913 913 907 918 [Si2O7]6-中Si-O-对称伸缩振动[19-20]
    951 995 978 1 000 959 991 [SiO3]2-中Si-O-对称伸缩振动[19-20]
    - - 1 076 - - 1 075 [Si2O5]2-中Si-O-对称伸缩振动[19-20]
    下载: 导出CSV

    表 4  渣中复杂结构和简单结构特征峰相对面积 /%

    Table 4.  Relative areas of characteristic peaks of complex structure and simple structure in test slag system

    名称Si-O-Si+Q2+Q3Q0+Q1Al-O-SiAl-O-AlAl-O-SC
    S114.9485.06---0.176
    S226.7073.30---0.364
    S371.5728.43---2.517
    S412.3078.2907.851.560.252
    S526.3335.4222.214.0112.031.108
    S627.7126.2237.603.904.572.248
    下载: 导出CSV
  • [1]

    徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(3): 8-13.XU Z Z, LIANG J L , LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 8-13.

    XU Z Z, LIANG J L , LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 8-13.

    [2]

    吴诰, 潘鹏, 范鹤林, 等. 钒渣提钒研究现状及发展趋势[J]. 江西冶金, 2020, 40(4): 19-27.WU G, PAN P , FAN H L, et al. A review on the research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020, 40(4): 19-27.

    WU G, PAN P , FAN H L, et al. A review on the research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020, 40(4): 19-27.

    [3]

    白凤仁, 刘福泉. 用钒渣直接冶炼钒铁的新工艺探讨[J]. 铁合金, 1995(1):30-33.BAI F R, LIU F Q. Discussion on new process of producing FeV using vanadium slag directly[J]. Ferro-Alloys, 1995(1):30-33.

    BAI F R, LIU F Q. Discussion on new process of producing FeV using vanadium slag directly[J]. Ferro-Alloys, 1995(1):30-33.

    [4]

    赵昌明, 李博洋, 蔡永红, 等. 碳热还原含钒钢渣磷与钒的分离研究[J]. 矿产综合利用, 2018(6):106-110.ZHAO C M, LI B Y, CAI Y H, et al. Study on separation of vanadium slag, phosphorus and vanadium by carbon thermal reduction[J]. Multipurpose Utilization of Mineral Resources, 2018(6):106-110.

    ZHAO C M, LI B Y, CAI Y H, et al. Study on separation of vanadium slag, phosphorus and vanadium by carbon thermal reduction[J]. Multipurpose Utilization of Mineral Resources, 2018(6):106-110.

    [5]

    周振宇, 唐萍, 侯自兵, 等. ω(SiO2)/ω(V2O3)对含钒炉渣熔化温度及黏度的影响[J]. 钢铁研究学报, 2019, 31(5):446-451.ZHOU Z Y, TANG P, HOU Z B, et al. Effect ofω(SiO2)/ω(V2O3) on melting and viscosity properties of vanadium slag[J]. Journal of Iron and Steel Research, 2019, 31(5):446-451.

    ZHOU Z Y, TANG P, HOU Z B, et al. Effect ofω(SiO2)/ω(V2O3) on melting and viscosity properties of vanadium slag[J]. Journal of Iron and Steel Research, 2019, 31(5):446-451.

    [6]

    Liu S, Wang L, Chou K C, et al. Viscosity measurement of FeO-SiO2-V2O3-TiO2 slags in the temperature range of 1644-1791 K and modelling by using ion-oxygen parameter[J]. Ironmaking& Steelmaking, 2017, 45(3):641-647.

    [7]

    曾晓兰. 钒渣物化性质与相图研究[D]. 重庆: 重庆大学, 2012.ZENG X L. Research on physicochemical properties and phase diagram of vanadium slag [D]. Chongqing: Chongqing University, 2012.

    ZENG X L. Research on physicochemical properties and phase diagram of vanadium slag [D]. Chongqing: Chongqing University, 2012.

    [8]

    宋文臣. 熔融态钒渣直接氧化提钒新工艺的基础研究[D]. 北京: 北京科技大学, 2015.SONG W C. Basic research on the novel process of vanadium extraction from molten vanadium slag by direct oxidation method[D]. Beijing: University of Science and Technology Beijing, 2015.

    SONG W C. Basic research on the novel process of vanadium extraction from molten vanadium slag by direct oxidation method[D]. Beijing: University of Science and Technology Beijing, 2015.

    [9]

    曾小平, 吴冰, 江山, 等. 碳酸钙在高温条件下的变化过程分析[J]. 广东化工, 2010, 37(5):70-72.ZENG X P, WU B, JIANG S, et al. The analysis for the calcium carbonate at high temperatures[J]. Guangdong Chemical Industry, 2010, 37(5):70-72.

    ZENG X P, WU B, JIANG S, et al. The analysis for the calcium carbonate at high temperatures[J]. Guangdong Chemical Industry, 2010, 37(5):70-72.

    [10]

    叶明峰, 吴光亮. 铬铁矿固态还原研究进展[J]. 矿产综合利用, 2018(6):13-18.YE M F, WU G L. Research progress of solid-state reduction of chromite[J]. Multipurpose Utilization of Mineral Resources, 2018(6):13-18.

    YE M F, WU G L. Research progress of solid-state reduction of chromite[J]. Multipurpose Utilization of Mineral Resources, 2018(6):13-18.

    [11]

    黄兵. CaO-SiO2-FeO-Cr2O3-MgO-MnO渣系粘度模型及熔渣结构的研究[D]. 重庆: 重庆大学, 2019.HUANG B. Study on viscosity model and structure of CaO-SiO2-FeO-Cr2O3-MgO-MnO slag[D]. Chongqing: Chongqing University, 2019.

    HUANG B. Study on viscosity model and structure of CaO-SiO2-FeO-Cr2O3-MgO-MnO slag[D]. Chongqing: Chongqing University, 2019.

    [12]

    Li Q H, Yang S, Zhang Y, et al. Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO-SiO2-Al2O3 slags[J]. ISIJ International, 2017, 57(4):689-696. doi: 10.2355/isijinternational.ISIJINT-2016-569

    [13]

    刘小杰, 兰臣臣, 朱二涛, 等. 几种添加剂对煤灰渣流动性影响研究[J]. 矿产综合利用, 2018(5):33-37.LIU X J, LAN C C, ZHU E T, et al. Investigation on effect of several additives on the fluidity of slag[J]. Multipurpose Utilization of Mineral Resources, 2018(5):33-37.

    LIU X J, LAN C C, ZHU E T, et al. Investigation on effect of several additives on the fluidity of slag[J]. Multipurpose Utilization of Mineral Resources, 2018(5):33-37.

    [14]

    Xu J F, S u L J, Chen D, et al. Experimental investigation on viscosity of CaO-MgO(-Al2O3)-SiO2slags and solid-liquid mixtures[J]. Journal of Iron and Steel Research(International), 2015, 22(12):1091-1097. doi: 10.1016/S1006-706X(15)30117-5

    [15]

    Mcmillan P F, Poe B T, Gillet P H, et al. A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy[J]. Geochimicaet Cosmochimica Acta, 1994, 58(17):3653-3664. doi: 10.1016/0016-7037(94)90156-2

    [16]

    Ippolito V, Andreozzi G B, Bersani D, et al. Raman fingerprint of chromate, aluminate and ferrite spinels[J]. Journal of Raman Spectroscopy, 2015, 46(12):1255-1264. doi: 10.1002/jrs.4764

    [17]

    Dutta B, Pal D. Absorption and Raman spectroscopy: ferrimagnet spinel MnCr2O4[C]//DAE SolidState Physics Symposium 2018.2019.

    [18]

    Whittaker L, Velazquze J M, Banerjee S. A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: facile synthesis, structural characterization, and elucidation of electronic structure[J]. CrystEngComm, 2011, 13(17):5328-5336. doi: 10.1039/c0ce00832j

    [19]

    严照照, 张淑会, 董晓旭, 等. 高炉渣的化学成分对其微观结构影响的研究现状[J]. 矿产综合利用, 2019(1):22-27.YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27.

    YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27.

    [20]

    严志明. 铝硅酸盐基高炉渣结构和性能基础研究[D]. 重庆: 重庆大学, 2019.YAN Z M. Fundamental research on the structure and physicochemical properties of aluminosilicatebased blast furnace slag[D]. Chongqing : Chongqing University, 2019.

    YAN Z M. Fundamental research on the structure and physicochemical properties of aluminosilicatebased blast furnace slag[D]. Chongqing : Chongqing University, 2019.

  • 加载中

(4)

(4)

计量
  • 文章访问数:  228
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2022-11-18
刊出日期:  2024-10-25

目录