Technology Progress and Development Trend of Preparing Magnesium Oxide from Magnesite
-
摘要:
这是一篇矿业工程领域的论文。我国菱镁矿资源丰富且品质优良,储量与品位皆位居世界第一,工业上常用其来制备氧化镁。菱镁矿在煅烧过程中微观结构的改变是影响氧化镁产品性能的关键。以此为切入点,首先概述了菱镁矿制备高性能氧化镁产品的技术进展,之后根据行业发展的制约因素分析了该领域的未来发展趋势。
Abstract:This is an article in the field of mining engineering. Magnesite in China is rich and good in quality. Its mineral quantity and grade rank the first in the world. It is widely used as the raw material for the production of magnesium oxide in industry. The change of microstructure of magnesite during calcination is the key to performance the properties of magnesia products. Taking this as the starting point, the technical progress of preparing high-performance magnesia products from magnesite is summarized firstly. Then, according to the restrictive factors of industry development, this article analyzes the future development trend of this field briefly.
-
Key words:
- Mining engineering /
- Magnesite /
- Environmental protection /
- Resource saving /
- Magnesium oxide
-
-
表 1 菱镁矿煅烧设备的优缺点
Table 1. Advantages and disadvantages of magnesite calcination equipment
菱镁矿
煅烧设备优点 缺点 反射炉 工艺简单 重污染,能耗高,逐渐淘汰 竖炉 工艺简单 重污染,产品质量不稳定 悬浮炉 受热均匀、能耗低、自动化 原料要求高、检修困难 多层炉 效果好、自动化 成本高 回转窑 煅烧均匀、能耗低、效果好 CO2、NOx排放 表 2 水泥行业常用的低氮燃烧技术
Table 2. Low nitrogen combustion technology commonly used in cement industry
-
[1] 国家统计局. 2020中国统计年鉴[M]. 北京: 中国统计出版社, 2020.State Statistics Bureau. China Statistical Yearbook 2020[M]. Peking: China Statistics Press, 2020.
State Statistics Bureau. China Statistical Yearbook 2020[M]. Peking: China Statistics Press, 2020.
[2] 祁欣, 罗旭东, 李振, 等. 高硅菱镁矿的选矿提纯与应用研究进展[J]. 硅酸盐通报, 2021, 40(2):485-492.QI X, LUO X D, LI Z, et al. Research progress on beneficiation, purification and application of high silicon magnesite[J]. Silicate Bulletin, 2021, 40(2):485-492.
QI X, LUO X D, LI Z, et al. Research progress on beneficiation, purification and application of high silicon magnesite[J]. Silicate Bulletin, 2021, 40(2):485-492.
[3] FOUDA A, HASSAN S E-D, SAIED E, et al. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105346-105346. doi: 10.1016/j.jece.2021.105346
[4] FOUDA A, AWAD M A, EID A M, et al. An eco-friendly approach to the control of pathogenic microbes and anopheles stephensi malarial vector using magnesium oxide nanoparticles (Mg-NPs) fabricated by penicillium chrysogenum[J]. International Journal of Molecular Sciences, 2021, 22(10):5096-5096. doi: 10.3390/ijms22105096
[5] SMAKOSZ Ł, KREJA I, POZORSKI Z. Edgewise compressive behavior of composite structural insulated panels with magnesium oxide board facings[J]. Materials, 2021, 14(11):3030-3030. doi: 10.3390/ma14113030
[6] MIGUEL V C, FINI D S, PINTO V S, et al. Crack-free caustic magnesia-bonded refractory castables[J]. Ceramics International, 2021, 47(12):17255-17261. doi: 10.1016/j.ceramint.2021.03.036
[7] WANG L, LI C, SHU C X, et al. Influence of lightly burned MgO on the mechanical properties and anti-carbonization of cement-based materials[J]. Coatings, 2021, 11(6):714-714. doi: 10.3390/coatings11060714
[8] 王倩倩, 陈中航, 李晓安, 等. 热处理菱镁矿制备氧化镁的国内研究进展[J]. 矿产综合利用, 2019(2):9-15.WANG Q Q, CHEN Z H, LI X A, et al. Progress of domestic research on preparation of magnesium oxide from heat treated magnesite[J]. Multipurpose Utilization of Mineral Resources, 2019(2):9-15.
WANG Q Q, CHEN Z H, LI X A, et al. Progress of domestic research on preparation of magnesium oxide from heat treated magnesite[J]. Multipurpose Utilization of Mineral Resources, 2019(2):9-15.
[9] 马鹏程. 高活性氧化镁和高密度烧结镁砂的研究[D]. 沈阳: 东北大学, 2014: 5-6+28.MA P C. Study on high activity magnesium oxide and high density sintered magnesia[D]. Shenyang: Northeastern University, 2014: 5-6+28.
MA P C. Study on high activity magnesium oxide and high density sintered magnesia[D]. Shenyang: Northeastern University, 2014: 5-6+28.
[10] BAI L M, MA Y X, ZHAO W Q, et al. Optimization and mechanism in preparing active magnesium oxide from magnesite[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2):1103-1109. doi: 10.1007/s10973-017-6278-4
[11] 周宝余, 李志坚, 吴锋, 等. 块状菱镁矿烧结中期液相烧结行为[J]. 辽宁科技大学学报, 2014, 37(5):493-498.ZHOU B Y, LI Z J, WU F, et al. Liquid phase sintering behavior of massive magnesite in the middle stage of sintering[J]. Journal of Liaoning University of Science and Technology, 2014, 37(5):493-498.
ZHOU B Y, LI Z J, WU F, et al. Liquid phase sintering behavior of massive magnesite in the middle stage of sintering[J]. Journal of Liaoning University of Science and Technology, 2014, 37(5):493-498.
[12] MITINA, N A, LOTOV, V A. Investigation of the change in the phase composition, properties, and hydraulic activity during the thermal treatment of magnesian materials[J]. Refractories and Industrial Ceramics, 2017, 58(3):331-337. doi: 10.1007/s11148-017-0105-0
[13] 任伟康. 新疆和静菱镁矿烧结实验研究[D]. 西安: 西安建筑科技大学, 2017.REN W K. Experimental study on sintering of magnesite in Hejing, Xinjiang[D]. Xi’an: Xi'an University of Architecture and Technology, 2017.
REN W K. Experimental study on sintering of magnesite in Hejing, Xinjiang[D]. Xi’an: Xi'an University of Architecture and Technology, 2017.
[14] 徐鹏, 朱静, 高小明, 等. 菱镁矿煅烧制备高活性MgO工艺[J]. 矿产综合利用, 2013(2):40-44.XU P, ZHU J, GAO X M, et al. Preparation of high activity MgO by calcination of magnesite[J]. Multipurpose Utilization of Mineral Resources, 2013(2):40-44.
XU P, ZHU J, GAO X M, et al. Preparation of high activity MgO by calcination of magnesite[J]. Multipurpose Utilization of Mineral Resources, 2013(2):40-44.
[15] 邓玉芬, 白丽梅, 张俊, 等. 菱镁矿阶梯化煅烧制备活性氧化镁[J]. 非金属矿, 2017, 40(1):16-18.DENG Y F, BAI L M, ZHANG J, et al. Preparation of active magnesia by stepped calcination of magnesite[J]. Nonmetallic Ore, 2017, 40(1):16-18.
DENG Y F, BAI L M, ZHANG J, et al. Preparation of active magnesia by stepped calcination of magnesite[J]. Nonmetallic Ore, 2017, 40(1):16-18.
[16] 陈建铭, 牛晓红, 王晓彤, 等. 采用定-转子碳化反应器制备高活性氧化镁[J]. 无机盐工业, 2016, 48(12):40-43.CHEN J M, NIU X H, WANG X T, et al. Preparation of highly reactive magnesium oxide using fixed-rotor carbonization reactor[J]. Inorganic Salt Industry, 2016, 48(12):40-43.
CHEN J M, NIU X H, WANG X T, et al. Preparation of highly reactive magnesium oxide using fixed-rotor carbonization reactor[J]. Inorganic Salt Industry, 2016, 48(12):40-43.
[17] PENG L, CHEN B. Study on the basic properties and mechanism of waste sludge solidified by magnesium phosphate cement containing different active magnesium oxide[J]. Construction and Building Materials, 2021, 281:122609-122609. doi: 10.1016/j.conbuildmat.2021.122609
[18] FORERO J A, BRAVO M, PACHECO J, et al. Fracture behaviour of concrete with reactive magnesium oxide as alternative binder[J]. Applied Sciences, 2021, 11(7):2891-2891. doi: 10.3390/app11072891
[19] 陈友治, 王一飞, 孙涛, 等. 活性氧化镁对高矿物掺和料水泥基材料固化氯离子能力的影响[J]. 硅酸盐通报, 2017, 36(1):276-281+287.CHEN Y Z, WANG Y F, SUN T, et al. Effect of active magnesium oxide on chloride ion curing ability of cement based materials with high mineral admixtures[J]. Bulletin of the Chinese Ceramics Society, 2017, 36(1):276-281+287.
CHEN Y Z, WANG Y F, SUN T, et al. Effect of active magnesium oxide on chloride ion curing ability of cement based materials with high mineral admixtures[J]. Bulletin of the Chinese Ceramics Society, 2017, 36(1):276-281+287.
[20] THAMILVANAN D, JAISO J, HII Y S, et al. Sol-gel coupled ultrasound synthesis of photo-activated magnesium oxide nanoparticles: optimization and antibacterial studies[J]. The Canadian Journal of Chemical Engineering, 2020, 99(2):502-518.
[21] SHENG L L, CHUN J S, XIAO Y Q, et al. Densification and grain growth behavior of highly dense MgO ceramics in pressureless sintering[J]. Ceramics International, 2015, 41(8):10148-10151. doi: 10.1016/j.ceramint.2015.04.115
[22] CHEN M Q, HE J J, ZHANG Y L, et al. Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing[J]. Ceramics International, 2017, 43(2):1775-1780. doi: 10.1016/j.ceramint.2016.10.129
[23] JIN E D, YU J K, WEN T P, et al. Effects of the molding method and blank size of green body on the sintering densification of magnesia[J]. Materials, 2019, 12(4):647-647. doi: 10.3390/ma12040647
[24] 王汇平, 崔妍, 曲殿利. 添加La2O3对菱镁矿制备烧结镁砂性能的影响[J]. 耐火材料, 2021, 55(1):61-63+68.WANG H P, CUI Y, QU D L. Effect of La2O3 addition on properties of magnesite sintered magnesia[J]. Refractories, 2021, 55(1):61-63+68.
WANG H P, CUI Y, QU D L. Effect of La2O3 addition on properties of magnesite sintered magnesia[J]. Refractories, 2021, 55(1):61-63+68.
[25] 胡生操, 王晨晨, 付金涛, 等. 新疆某菱镁矿浮选工艺试验研究[J]. 矿产综合利用, 2022(2):69-73.HU S C, WANG C C, FU J T, et al. Research on flotation process test of magnesite in xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022(2):69-73.
HU S C, WANG C C, FU J T, et al. Research on flotation process test of magnesite in xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022(2):69-73.
[26] 谢鹏永, 罗旭东, 郝长安. 低品位菱镁矿的热选提纯工艺研究[J]. 耐火材料, 2017, 51(1):53-56.XIE P Y, LUO X D, HAO C A. Study on the purification process of low grade magnesite by thermal separation[J]. Refractories, 2017, 51(1):53-56.
XIE P Y, LUO X D, HAO C A. Study on the purification process of low grade magnesite by thermal separation[J]. Refractories, 2017, 51(1):53-56.
[27] URVANTSEV A M, KASHCHEEV I D. Magnesite enrichment by a dry method[J]. Refractories and Industrial Ceramics, 2012, 53(2):78-81. doi: 10.1007/s11148-012-9467-5
[28] 王恩雷, 李晓安, 姜效军, 等. 辽宁海城某菱镁矿难选原因分析及浮选研究[J]. 矿产综合利用, 2021(2):13-16+7.WANG E L, LI X A, JIANG X J, et al. Cause analysis and flotation research on refractory magnesite in Haicheng, Liaoning Province[J]. Multipurpose Utilization of Mineral Resources, 2021(2):13-16+7.
WANG E L, LI X A, JIANG X J, et al. Cause analysis and flotation research on refractory magnesite in Haicheng, Liaoning Province[J]. Multipurpose Utilization of Mineral Resources, 2021(2):13-16+7.
[29] 曹云霄. 低品位菱镁矿水中脉冲放电破碎与电选分离研究[D]. 大连: 大连理工大学, 2019.CAO Y X. Study on pulse discharge crushing and electric separation of low grade magnesite in water[D]. Dalian: Dalian University of Technology, 2019.
CAO Y X. Study on pulse discharge crushing and electric separation of low grade magnesite in water[D]. Dalian: Dalian University of Technology, 2019.
[30] 姜微微, 郝文倩, 刘雪景, 等. 微型流化床内菱镁矿轻烧反应特性及动力学[J]. 化工学报, 2019, 70(8):2928-2937.JIANG W W, HAO W Q, LIU X J, et al. Characteristics and kinetics of magnesite light burning reaction in a micro fluidized bed[J]. Journal of Chemical Engineering, 2019, 70(8):2928-2937.
JIANG W W, HAO W Q, LIU X J, et al. Characteristics and kinetics of magnesite light burning reaction in a micro fluidized bed[J]. Journal of Chemical Engineering, 2019, 70(8):2928-2937.
[31] 孙聪, 闫博威, 蔡长庸, 等. 菱镁矿输送床轻烧过程反应与产物微观结构特性[J]. 化工学报, 2020, 71(12):5735-5744+5352.SUN C, YAN B W, CAI C Y, et al. Reaction and microstructure characteristics of products in light burning process of magnesite transport bed[J]. Journal of Chemical Engineering, 2020, 71(12):5735-5744+5352.
SUN C, YAN B W, CAI C Y, et al. Reaction and microstructure characteristics of products in light burning process of magnesite transport bed[J]. Journal of Chemical Engineering, 2020, 71(12):5735-5744+5352.
[32] 彭强, 郭玉香, 曲殿利, 等. 菱镁矿悬浮态与堆积态煅烧对产物特性的影响[J]. 人工晶体学报, 2017, 46(6):1088-1091.PENG Q, GUO Y X, QU D L, et al. Influence of magnesite calcination in suspension and accumulation state on product characteristics[J]. Journal of Synthetic Crystals, 2017, 46(6):1088-1091.
PENG Q, GUO Y X, QU D L, et al. Influence of magnesite calcination in suspension and accumulation state on product characteristics[J]. Journal of Synthetic Crystals, 2017, 46(6):1088-1091.
[33] 唐竹胜, 陶立群, 唐佳. 菱镁矿煅烧活性氧化镁联产干冰新工艺简介[J]. 中国金属通报, 2018(3):94-95.TANG Z S, TAO L Q, TANG J. Brief introduction of new process of magnesite calcination active magnesia co production of dry ice[J]. China Metal Bulletin, 2018(3):94-95.
TANG Z S, TAO L Q, TANG J. Brief introduction of new process of magnesite calcination active magnesia co production of dry ice[J]. China Metal Bulletin, 2018(3):94-95.
[34] WANG X, ZHAO L, ZHANG L H, et al. A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2019, 187:115963. doi: 10.1016/j.energy.2019.115963
[35] DITARANTO M, BAKKEN J. Study of a full scale oxy-fuel cement rotary kiln[J]. International Journal of Greenhouse Gas Control, 2019, 83:166-175. doi: 10.1016/j.ijggc.2019.02.008
[36] DU L, JIN B, ZHENG X, et al. Effect of reburning zone conditionson no reduction efficiency in an online precalciner-type kiln system[J]. Environmental Progress & Sustainable Energy, 2016, 35(2):439-446.
[37] FRANCISCO C M, REINHOKD S, KRISTINA F, et al. Oxy-fuel combustion technology for cement production-state of the art research and technology development[J]. International Journal of Greenhouse Gas Control, 2016, 45:189-199. doi: 10.1016/j.ijggc.2015.12.014
-