-
摘要:
这是一篇矿物加工工程领域的论文。疏水-亲水双液分选相较于泡沫浮选在微细粒(煤30~50 μm、非煤矿物10~20 μm)回收方面有较大优势。基于油团聚、奥蒂斯卡工艺、驱替脱水、双液浮选和低沸点非极性液体回收等开发的新型疏水-亲水双液分选技术(Hydrophobic-hydrophilic Separation)能够促使超细粒团聚体在双相系统中充分破碎再分配,从而达到驱水除杂的双重目的。从HHS选煤过程、团聚体破碎理论、疏水液体回收可行性、相较于泡沫浮选和油团聚的技术优势以及细粒煤脱水技术等方面对疏水-亲水分选近些年的发展进行梳理比较,以期能够为下一步发展提供参考建议。
Abstract:This is an article in the field of mineral processing engineering. Compared with foam flotation, the hydrophobic-hydrophilic two-liquid separation has a greater advantage in the recovery of ultra-fine particles (coal 30~50 μm, non-coal 10~20 μm). Based on oil agglomeration, Otiska process, displacement dehydration, dual-liquid flotation and low boiling point non-polar liquid recovery, a new kind of hydrophobic-hydrophilic dual-liquid separation technology (HHS) can promote the full fragmentation and redistribution of ultra-fine aggregates in the dual-phase system, so as to achieve the purpose of flooding water and ash reduction. In this article, the development of hydrophobic-hydrophilic separation in recent years was summarized and compared from the aspects of HHS coal preparation process, aggregate crushing theory, feasibility of hydrophobic liquid recovery, technological advantages compared with foam flotation and oil agglomeration, and dehydration of fine coal, in order to provide references for the further development.
-
-
图 6 疏水相互作用示意[24]
Figure 6.
-
[1] 刘子帅, 李宁钧. 微细粒钨锡矿物选矿技术研究现状及进展[J]. 矿产综合利用, 2017(2):12-14, 7.LIU Z S, LI N J. Research status and development of mineral processing technology of fine grain tungsten tin ore[J]. Multipurpose Utilization of Mineral Resources, 2017(2):12-14, 7. doi: 10.3969/j.issn.1000-6532.2017.02.003
LIU Z S, LI N J. Research status and development of mineral processing technology of fine grain tungsten tin ore[J]. Multipurpose Utilization of Mineral Resources, 2017(2):12-14, 7. doi: 10.3969/j.issn.1000-6532.2017.02.003
[2] 王澜, 艾光华, 杨冰, 等. 纳米技术浮选技术研究进展[J]. 矿产综合利用, 2020(1):29-32.WANG L, AI G H, YANG B, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32. doi: 10.3969/j.issn.1000-6532.2020.01.005
WANG L, AI G H, YANG B, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32. doi: 10.3969/j.issn.1000-6532.2020.01.005
[3] 侯思懿,铁生年.利用双液浮选法回收硅片切割废料中SiC的试验研究[J].硅酸盐通报, 2017, 36(8):2816-2821.HOU S Y, TIE S N. Experimental study on the recovery of SiC from silicon wafer cutting waste using bi-liquid flotation[J]. Silicate Bulletin, 2017, 36(8):2816-2821.
HOU S Y, TIE S N. Experimental study on the recovery of SiC from silicon wafer cutting waste using bi-liquid flotation[J]. Silicate Bulletin, 2017, 36(8):2816-2821.
[4] 葛英勇,侯静,涛余俊. 微细粒矿物浮选技术进展[J]. 金属矿山, 2010(12):90-94+106.GE Y Y, HOU J, TAO Y J. Advances in flotation technology for fine-grained minerals[J]. Metal Mines, 2010(12):90-94+106.
GE Y Y, HOU J, TAO Y J. Advances in flotation technology for fine-grained minerals[J]. Metal Mines, 2010(12):90-94+106.
[5] 翁巧银, 陈雯, 沈强华. 煤的选择性聚团法深度脱灰研究[J]. 矿产综合利用, 2007(1):19-21.WEN Q Y, CHEN W, SHEN Q H. Research on the preparation of ultra-clean coal with selective agglomeration[J]. Multipurpose Utilization of Mineral Resources, 2007(1):19-21. doi: 10.3969/j.issn.1000-6532.2007.01.006
WEN Q Y, CHEN W, SHEN Q H. Research on the preparation of ultra-clean coal with selective agglomeration[J]. Multipurpose Utilization of Mineral Resources, 2007(1):19-21. doi: 10.3969/j.issn.1000-6532.2007.01.006
[6] Capes C E, Darcovich K. A survey of oil agglomeration in wet fine coal processing[J]. Powder Technology, 1984, 40(1-3):43-52. doi: 10.1016/0032-5910(84)85054-8
[7] Yoon R H, Luttrell G H. Method for dewatering fine coal, US: 5458786[P].1995-10-11.
[8] Yoon R H, Eraydin M K. Cleaning and dewatering fine coal[J]. 2018.
[9] 于淙权. 疏水改性聚丙烯酰胺的制备及选择性絮凝-浮选研究[J]. 矿产综合利用, 2021(1):199-203.YU C Q. Preparation of hydrophobic modified polyacrylamide and study on selective flocculation-flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(1):199-203. doi: 10.3969/j.issn.1000-6532.2021.01.033
YU C Q. Preparation of hydrophobic modified polyacrylamide and study on selective flocculation-flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(1):199-203. doi: 10.3969/j.issn.1000-6532.2021.01.033
[10] Elmore S E. Separating mineral substances by the selective action of oil, US: 689070A[P]. 1901-12-17.
[11] YI H S, NIAN T S, University Q. Experimental investigation on recycling silicon carbide from silicon wafers cutting waste through dual-liquid flotation[J]. Bulletin of the Chinese Ceramic Society, 2017.
[12] 张香亭, 刘晨宏, 郭东风. 双液浮选脱除煤系高岭土中的铁[J]. 煤炭学报, 2000, 25(1):186-192.ZHANG X T, LIU C H, GUO D F. Removal of iron from kaolin occurring in coal bearing formation through dual liquid flotation[J]. Journal of China Coal Society, 2000, 25(1):186-192. doi: 10.3321/j.issn:0253-9993.2000.z1.042
ZHANG X T, LIU C H, GUO D F. Removal of iron from kaolin occurring in coal bearing formation through dual liquid flotation[J]. Journal of China Coal Society, 2000, 25(1):186-192. doi: 10.3321/j.issn:0253-9993.2000.z1.042
[13] 日下英史, 徐秀芝. 用烷基胺液-液萃取法回收微细粒磷钇矿的研究[J]. 国外稀有金属, 1992, 000(001):17-24.RIXIA Y H, XU X Z. Study on recovery of microfine grain phosphorus yttrium mine by alkylamine liquid-liquid extraction[J]. Raremetals Abroad, 1992, 000(001):17-24.
RIXIA Y H, XU X Z. Study on recovery of microfine grain phosphorus yttrium mine by alkylamine liquid-liquid extraction[J]. Raremetals Abroad, 1992, 000(001):17-24.
[14] Otsuki A, Dodbiba G, Shibayama A, et al. Separation of rare earth fluorescent powders by two-liquid flotation using organic solvents[J]. Japanese Journal of Applied Physics, 2014, 47(6):5093-5099.
[15] Mehrotra V P, Sastry K V S, Morey B W. Review of oil agglomeration techniques for processing of fine coals[J]. International Journal of Mineral Processing, 1983, 11(3):175-201. doi: 10.1016/0301-7516(83)90025-X
[16] 竺桦, 陈诵英. 煤的油团聚脱灰工艺[J]. 煤炭综合利用译丛, 1989(3):1-9.ZHU H, CHEN S Y. Oil reunion removal process of coal[J]. Comprehensive Utilization of Coal, 1989(3):1-9.
ZHU H, CHEN S Y. Oil reunion removal process of coal[J]. Comprehensive Utilization of Coal, 1989(3):1-9.
[17] Armstrong, L. W. , Swanson, A. R. Nicol, S. K. Selective agglomeration of fine coal refuse[J]. BHP Tech. Bull, 1978, 22(1): 37-40.
[18] 王市委, 陶秀祥, 陈松降, 等. 低阶煤-油泡浮选技术研究进展[J]. 矿产综合利用, 2020(4):48-58.WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
[19] Keller D V. Coal recovery process,US: 4248698[P]. 1981-02-03.
[20] Yoon, Roe-Hoan. Methods for separation and dewatering fine particles,CAN: 2875024[P]. 2006-01.
[21] Yoon R, Sohn S, Luttrell J, et al. Hydrophobic dewatering of fine coal. Topical report, March 1, 1995-March 31, 1997[J]. Office of Scientific & Technical Information Technical Reports.
[22] Smith, Sarah Ann. Methods of improving oil agglomeration[D]. US: the Virginia Polytechnic Institute and State University, 2012.
[23] Jain R. Processing low coal and ultrafine mineral particles by hydrophobic-hydrophilic separation[D]. US: the Virginia Polytechnic Institute and State University, 2013.
[24] Gupta N. Development of a novel fine coal cleaning and dewatering technology[D]. US: the Virginia Polytechnic Institute and State University, 2014.
[25] Alan W. Jones III. Advancement of the hydrophobic-hydrophilic separation process[D]. US: the Virginia Polytechnic Institute and State University, 2019.
[26] Biao Li. Hydrophobic-hydrophilic separation process for the recovery of ultrafine particles[D]. US: the Virginia Polytechnic Institute and State University, 2019.
[27] 惠学德. 双液浮选及其在细粒物料分选中的应用[J]. 国外金属矿选矿, 1992(11):18-22.HUI X D. Double-liquid flotation and its application in fine-grain material sorting[J]. Metallic Ore Dressing Abroad, 1992(11):18-22.
HUI X D. Double-liquid flotation and its application in fine-grain material sorting[J]. Metallic Ore Dressing Abroad, 1992(11):18-22.
[28] 徐宏祥, 孙先凤, 张立峰, 等. 油水分离浮选柱的旋流分离作用研究[J]. 矿产综合利用, 2017(4): 28-32.XU H X, SUN X F, ZHANG L F, et al. Research on cyclonic efficiency in oil-water separation flotation column[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 199-203.
XU H X, SUN X F, ZHANG L F, et al. Research on cyclonic efficiency in oil-water separation flotation column[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 199-203.
[29] Hunter G W, Xu J C, Biaggi-Labiosa A M, et al. Chapter 17-Smart Sensor Systems for Human Health Breath Monitoring Applications[M]// Volatile Biomarkers. Elsevier B. V. 2013.
[30] Burry D V, Keller K J. An investigation of a separation process involving liquid-water-coal systems[J]. Colloids and Surfaces, 1988: 37-50.
[31] Robert J, Good, et al. Liquid bridges and the oil agglomeration method of coal beneficiation: an elementary theory of stability[J]. Langmuir, 1991: 3219-3221.
[32] 宋帅, 樊玉萍, 马晓敏, 等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用, 2020(1):168-172.SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172. doi: 10.3969/j.issn.1000-6532.2020.01.034
SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172. doi: 10.3969/j.issn.1000-6532.2020.01.034
[33] Yoon R H, Eraydin M K. Cleaning and Dewatering Fine Coal, US: 9789492B2[P]. 2018-10-17.
[34] Patterson I, Kamal M R. Shear deagglomeration of solid aggregates suspended in viscous liquids[J]. The Canadian Journal of Chemical Engineering, 1974, 52(3):306-315. doi: 10.1002/cjce.5450520303
[35] Boyle J F, Manas-Zloczower I, Feke D L. Hydrodynamic analysis of the mechanisms of agglomerate dispersion[J]. Powder Technology, 2005, 153(2):127-133. doi: 10.1016/j.powtec.2004.08.010
[36] Scurati A. Dispersion engineering and modeling of silica filled rubber compounds[D]. US: Case Western Reserve University. 2003.
[37] Potente H, Kretschmer K, Flecke J. A physical-mathematical model for the dispersion process in continuous mixers[J]. Polymer Engineering & ence, 2010, 42(1):19-32.
[38] 药靖晖, 杨润全, 王怀法. 叶轮转速对粗粒浮选机分选动力煤的影响[J]. 矿产综合利用, 2019(4):153-158.YAO J H, YANG R Q, WANG H F. Effect of rotation speed of impeller on separation of steam coal by coarse flotation machine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):153-158. doi: 10.3969/j.issn.1000-6532.2019.04.033
YAO J H, YANG R Q, WANG H F. Effect of rotation speed of impeller on separation of steam coal by coarse flotation machine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):153-158. doi: 10.3969/j.issn.1000-6532.2019.04.033
[39] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55.CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
[40] 高丽娜, 闵凡飞, 彭陈亮, 等. 黏土矿物疏水改性研究现状及发展[J]. 矿产综合利用, 2014(1):20-24.GAO L N, MIN F F, PENG C L, et al. Study on hydrophobic modification of clay minerals[J]. Multipurpose Utilization of Mineral Resources, 2014(1):20-24. doi: 10.3969/j.issn.1000-6532.2014.01.005
GAO L N, MIN F F, PENG C L, et al. Study on hydrophobic modification of clay minerals[J]. Multipurpose Utilization of Mineral Resources, 2014(1):20-24. doi: 10.3969/j.issn.1000-6532.2014.01.005
[41] 罗琳, 邱冠周, 王淀佐, 等. 赤铁矿-油酸钠体系的界面力机理研究[J]. 矿产综合利用, 1996(3):36-40.LUO L, QIU G Z, WANG D Z, et al. Study on the interface force mechanism of hematite-sodium oleate system[J]. Multipurpose Utilization of Mineral Resources, 1996(3):36-40.
LUO L, QIU G Z, WANG D Z, et al. Study on the interface force mechanism of hematite-sodium oleate system[J]. Multipurpose Utilization of Mineral Resources, 1996(3):36-40.
[42] 谢广元. 选矿学[M]. 中国矿业大学出版社, 2016.XIE G Y. Xuankuangxue[M]. China University of Mining and Technology Press, 2016.
XIE G Y. Xuankuangxue[M]. China University of Mining and Technology Press, 2016.
[43] Freeland, Chad Lee. Low temperature drying of ultrafine coal[D]. US: the Virginia Polytechnic Institute and State University, 2010.
[44] 王成勇, 陈鹏, 潘东, 等. 疏水引力在煤泥浮选过程中的作用机理及应用[J]. 矿产综合利用, 2020(3):105-110.WANG C Y, CHEN P, PAN D, et al. Mechanism and application of hydrophobic attraction in coal flotation process[J]. Multipurpose Utilization of Mineral Resources, 2020(3):105-110. doi: 10.3969/j.issn.1000-6532.2020.03.017
WANG C Y, CHEN P, PAN D, et al. Mechanism and application of hydrophobic attraction in coal flotation process[J]. Multipurpose Utilization of Mineral Resources, 2020(3):105-110. doi: 10.3969/j.issn.1000-6532.2020.03.017
[45] 谢锐, 王艳, 韩彬, 等. 都龙矿区尾矿高效浓缩脱水试验研究与应用[J]. 矿产综合利用, 2017(3):99-102.XIE R, WANG Y, HAN B, et al. Experimental study and application of high capacity thickening and dewatering in Dulong Mine Area[J]. Multipurpose Utilization of Mineral Resources, 2017(3):99-102. doi: 10.3969/j.issn.1000-6532.2017.03.020
XIE R, WANG Y, HAN B, et al. Experimental study and application of high capacity thickening and dewatering in Dulong Mine Area[J]. Multipurpose Utilization of Mineral Resources, 2017(3):99-102. doi: 10.3969/j.issn.1000-6532.2017.03.020
[46] 冉银华, 李学智. 某超细粒物料的脱水实践[J]. 矿产综合利用, 2006(5):51-52.RAN Y H, LI X Z. Dehydration practice of a ultra-fine grain[J]. Multipurpose Utilization of Mineral Resources, 2006(5):51-52. doi: 10.3969/j.issn.1000-6532.2006.05.014
RAN Y H, LI X Z. Dehydration practice of a ultra-fine grain[J]. Multipurpose Utilization of Mineral Resources, 2006(5):51-52. doi: 10.3969/j.issn.1000-6532.2006.05.014
[47] 闫奋飞, 齐健, 王怀法. 表面活性剂在细粒煤过滤脱水中的作用研究[J]. 矿产综合利用, 2018(3):61-65.YAN F F, QI J, WANG H F. Investigation on impact of surfactants in filtration dewatering[J]. Multipurpose Utilization of Mineral Resources, 2018(3):61-65. doi: 10.3969/j.issn.1000-6532.2018.03.012
YAN F F, QI J, WANG H F. Investigation on impact of surfactants in filtration dewatering[J]. Multipurpose Utilization of Mineral Resources, 2018(3):61-65. doi: 10.3969/j.issn.1000-6532.2018.03.012
[48] 江玲, 邓秀文, 颜世栋, 等. 某铀矿石在磷酸三丁酯-乙二酸四乙酸二钠体系中铀的萃取性能研究[J]. 矿产综合利用, 2018(6):136-138.JINAG L, DENG X W, YAN S D, et al. Extraction properties of uranium from a uranium ore in TBP-EDTA system[J]. Multipurpose Utilization of Mineral Resources, 2018(6):136-138. doi: 10.3969/j.issn.1000-6532.2018.06.028
JINAG L, DENG X W, YAN S D, et al. Extraction properties of uranium from a uranium ore in TBP-EDTA system[J]. Multipurpose Utilization of Mineral Resources, 2018(6):136-138. doi: 10.3969/j.issn.1000-6532.2018.06.028
[49] 马跃, 王鞍山, 高飞, 等. 一种超细粒级尾矿分选方法: 106216085A[P]. 2016-08-15.MA Y, WANG A S, GAO F, et al. A kind of ultra-fine grained tailings sorting method: 106216085A[P]. 2016-08-15.
MA Y, WANG A S, GAO F, et al. A kind of ultra-fine grained tailings sorting method: 106216085A[P]. 2016-08-15.
-