纳米气泡浮选技术研究进展

杨晓, 陶东平, 邵怀志, 申有悦. 纳米气泡浮选技术研究进展[J]. 矿产综合利用, 2024, 45(5): 123-132. doi: 10.3969/j.issn.1000-6532.2024.05.018
引用本文: 杨晓, 陶东平, 邵怀志, 申有悦. 纳米气泡浮选技术研究进展[J]. 矿产综合利用, 2024, 45(5): 123-132. doi: 10.3969/j.issn.1000-6532.2024.05.018
YANG Xiao, TAO Dongping, SHAO Huaizhi, SHEN Youyue. Research Progress of Nanobubble Flotation Technology[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 123-132. doi: 10.3969/j.issn.1000-6532.2024.05.018
Citation: YANG Xiao, TAO Dongping, SHAO Huaizhi, SHEN Youyue. Research Progress of Nanobubble Flotation Technology[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 123-132. doi: 10.3969/j.issn.1000-6532.2024.05.018

纳米气泡浮选技术研究进展

详细信息
    作者简介: 杨晓(1998-),女,硕士研究生,主要从事纳米气泡浮选研究
    通讯作者: 陶东平(1963-),男,教授,主要从事矿物加工领域研究工作。
  • 中图分类号: TD923

Research Progress of Nanobubble Flotation Technology

More Information
  • 这是一篇矿物加工工程领域的论文。泡沫浮选是分选矿物颗粒的主要方法,但传统浮选技术所用的常规气泡尺寸较大,对微细颗粒分选效果较差。作为解决微细颗粒分选问题重要手段的纳米气泡因具独特的物理化学性质,在矿物浮选等领域受到广泛关注和深入研究。本文综述了纳米气泡的形成、制备和稳定性方面的研究进展,介绍了纳米气泡浮选在矿物加工和环境治理等方面的应用,并对纳米气泡浮选未来的研究和发展进行了展望。

  • 加载中
  • 图 1  乙醇和水的温度为30 ℃时,不同环境温度下纳米气泡随时间的稳定性:(A) 21 ℃下20 min,(B) 21 ℃下2 d,(C) 23 ℃下额外一天,(D) 25 ℃下第二天(开始日后的第5天)

    Figure 1. 

    图 2  (a)STXM测量水电解产生的高密度氧气纳米气泡示意;(b)纳米气泡中氧气吸收光谱与 50 atm 压力下氧气吸收光谱对比;(c)计算不同尺寸纳米气泡内部氧气密度以及周围水中氧气浓度

    Figure 2. 

    图 3  对于均匀基底上的界面纳米气泡的两种稳定性机制

    Figure 3. 

    图 4  pH值对纳米气泡平均尺寸和ζ电位的影响

    Figure 4. 

    图 5  常规浮选和纳米气泡浮选差异示意

    Figure 5. 

    图 6  纯水中纳米气泡对电极材料浮选回收率和浮选选择性的影响

    Figure 6. 

  • [1]

    王澜, 艾光华, 杨冰, 等. 纳米技术浮选技术研究进展[J]. 矿产综合利用, 2020(1):29-32.WANG L, AI G H, YANG B, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32.

    WANG L, AI G H, YANG B, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32.

    [2]

    TAO D, SOBHY A. Nanobubble effects onhydrodynamic interactions between particles and bubbles[J]. Powder Technology, 2019, 346:385-395. doi: 10.1016/j.powtec.2019.02.024

    [3]

    ZHANG F, XING Y, CHANG G, et al. Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method[J]. Fuel, 2021, 293:120313. doi: 10.1016/j.fuel.2021.120313

    [4]

    LEE J G, FLUMERFELT R W. A refined approach to bubble nucleation and polymer foaming process: dissolved gas and cluster size effects[J]. Journal of Colloid and Interface Science, 1996, 184(2):335-348. doi: 10.1006/jcis.1996.0628

    [5]

    ERIKSSON J C, LJUNGGREN S. On the mechanically unstable free energy minimum of a gas bubble which is submerged in water and adheres to a hydrophobic wall[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159(1):159-163. doi: 10.1016/S0927-7757(99)00171-5

    [6]

    YOUNT D E, KUNKLE T D. Gas nucleation in the vicinity of solid hydrophobic spheres[J]. Journal of Applied Physics, 1975, 46(10):4484-4486. doi: 10.1063/1.321381

    [7]

    ZHOU W, WU C, LV H, et al. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation[J]. Applied Surface Science, 2020, 508:145282. doi: 10.1016/j.apsusc.2020.145282

    [8]

    LI D, QI L, LIU Y, et al. Study on the formation and properties of trapped nanobubbles and surface nanobubbles by spontaneous and temperature difference methods[J]. Langmuir, 2019, 35(37):12035-12041. doi: 10.1021/acs.langmuir.9b02058

    [9]

    LUO L, WHITE H S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes[J]. Langmuir, 2013, 29(35):11169-11175. doi: 10.1021/la402496z

    [10]

    ETCHEPARE R, AZEVEDO A, CALGAROTO S, et al. Removal of ferric hydroxide by flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 184:347-353. doi: 10.1016/j.seppur.2017.05.014

    [11]

    GAO Y, DASHLIBORUN A M, ZHOU J Z, et al. Formation and stability of cavitation microbubbles in process water from the oilsands industry[J]. Industrial & Engineering Chemistry Research, 2021, 60(7):3198-3209.

    [12]

    黄艳. 浮选柱回收微细粒矿物的探索实验: 2013年全国选矿前沿技术与装备大会[C]. 昆明, 2013.HUANG Y. Exploration and experiment on recovery of fine minerals by flotation column: 2013 National Conference on Frontier Technology and equipment for Beneficiation[C]. Kunming, 2013.

    HUANG Y. Exploration and experiment on recovery of fine minerals by flotation column: 2013 National Conference on Frontier Technology and equipment for Beneficiation[C]. Kunming, 2013.

    [13]

    赵敏捷, 方建军, 李国栋, 等. 旋流-静态微泡浮选柱的应用及研究进展[J]. 矿产综合利用, 2016(4): 6-10.ZHAO M J, FANG J J , LI G D, et al. State and application of cyclonic static microbubble flotationcolumn [J]. Multipurpose Utilization of Mineral Resources, 2016, No. 200(4): 6-10.

    ZHAO M J, FANG J J , LI G D, et al. State and application of cyclonic static microbubble flotationcolumn [J]. Multipurpose Utilization of Mineral Resources, 2016, No. 200(4): 6-10.

    [14]

    阳华玲, 朱超英, 易峦, 等. 微细粒浮选柱的研究现状及其新进展[J]. 湖南有色金属, 2014, 30(5):11-16.YANG H L, ZHU C Y, YI L, et al. Research present situation and new progress of flotation column for finepaticles[J]. Hunan Nonferrous Metals, 2014, 30(5):11-16.

    YANG H L, ZHU C Y, YI L, et al. Research present situation and new progress of flotation column for finepaticles[J]. Hunan Nonferrous Metals, 2014, 30(5):11-16.

    [15]

    ZHANG X H, QUINN A, DUCKER W A. Nanobubbles at the interface between water and a hydrophobic solid[J]. Langmuir, 2008, 24(9):4756-4764. doi: 10.1021/la703475q

    [16]

    ZHAO B, WANG X, WANG S, et al. In situ measurement of contact angles and surface tensions of interfacial nanobubbles in ethanol aqueous solutions[J]. Soft Matter, 2016, 12(14):3303-3309. doi: 10.1039/C5SM02871J

    [17]

    FANG Z, WANG X, ZHOU L, et al. Formation and stability of bulk nanobubbles by vibration[J]. Langmuir, 2020, 36(9):2264-2270. doi: 10.1021/acs.langmuir.0c00036

    [18]

    YANG J, DUAN J, FORNASIERO D, et al. Very small bubble formation at the solid− water interface[J]. The Journal of Physical Chemistry B, 2003, 107(25):6139-6147. doi: 10.1021/jp0224113

    [19]

    ZHOU L, WANG X, SHIN H, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142(12):5583-5593. doi: 10.1021/jacs.9b11303

    [20]

    王硕. 纳米气泡的稳定性及其内部密度的测量[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018.WANG S. Stability of nano-bubbles and measurement of their internal density [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2018.

    WANG S. Stability of nano-bubbles and measurement of their internal density [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2018.

    [21]

    CHUN-LEI W, ZHAO-XIA L, JING-YUAN L, et al. High density gas state at water/graphite interface studied by molecular dynamics simulation[J]. Chinese Physics B, 2008, 17(7):2646. doi: 10.1088/1674-1056/17/7/049

    [22]

    ZHANG X, CHAN D Y C, WANG D, et al. Stability of interfacial nanobubbles[J]. Langmuir, 2013, 29(4):1017-1023. doi: 10.1021/la303837c

    [23]

    GUO Z, WANG X, ZHANG X. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019, 35(25):8482-8489.

    [24]

    MICHAILIDI E D, BOMIS G, VAROUTOGLOU A, et al. Bulk nanobubbles: Production and investigation of their formation/stability mechanism[J]. Journal of Colloid and Interface Science, 2020, 564:371-380. doi: 10.1016/j.jcis.2019.12.093

    [25]

    NIRMALKAR N, PACEK A W, BARIGOU M. On the existence and stability of bulk nanobubbles[J]. Langmuir, 2018, 34(37):10964-10973. doi: 10.1021/acs.langmuir.8b01163

    [26]

    ZHANG X, WANG Q, WU Z, et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2):152-161. doi: 10.1007/s12613-019-1936-0

    [27]

    TAO Y, LIU J, YU S, et al. Picobubble enhanced fine coal flotation[J]. Separation Science and Technology, 2006, 41(16):3597-3607. doi: 10.1080/01496390600957249

    [28]

    FAN M, TAO D. A study on picobubble enhanced coarse phosphate froth flotation[J]. Separation Science and Technology, 2008, 43(1):1-10. doi: 10.1080/01496390701747853

    [29]

    李军,孙健翔,许泽胜,等. 微硅粉浮选中的纳米气泡稳定性及协同作用的讨论[J]. 矿业科学学报, 2022, 7(6):763-769.LI J, SUN J X, XU Z S, et al. On stability and synergistic effect of nano-bubbles in micro-silica flotation[J]. Journal of Mining Science and Technology, 2022, 7(6):763-769. doi: 10.19606/j.cnki.jmst.2022.06.013

    LI J, SUN J X, XU Z S, et al. On stability and synergistic effect of nano-bubbles in micro-silica flotation[J]. Journal of Mining Science and Technology, 2022, 7(6):763-769. doi: 10.19606/j.cnki.jmst.2022.06.013

    [30]

    刘子帅, 李宁钧. 微细粒钨锡矿物选矿技术研究现状及进展[J]. 矿产综合利用, 2017(2):12-14+7.LIU Z S, LI N J. Research status and development of mineral processing technology of fine grain tungsten tin ore[J]. Multipurpose Utilization of Mineral Resources, 2017(2):12-14+7.

    LIU Z S, LI N J. Research status and development of mineral processing technology of fine grain tungsten tin ore[J]. Multipurpose Utilization of Mineral Resources, 2017(2):12-14+7.

    [31]

    TAO D, WU Z, SOBHY A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms[J]. Powder Technology, 2021, 379:12-25. doi: 10.1016/j.powtec.2020.10.040

    [32]

    SOBHY A, TAO D. High-efficiency nanobubble coal flotation[J]. International Journal of Coal Preparation and Utilization, 2013, 33(5):242-256. doi: 10.1080/19392699.2013.810623

    [33]

    MA F, TAO D, TAO Y. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2019: 1-17.

    [34]

    TAO D, FAN M, WU Z, et al. Investigation of effects of nanobubbles on phosphate ore flotation[J]. International Journal of Georesources and Environment-IJGE (formerly Int'l J of Geohazards and Environment), 2018, 4(3):133-140.

    [35]

    曾维能, 任浏祎, 魏鹏刚, 等. 微纳米气泡对典型细粒氧化矿物浮选的影响及机理[J]. 金属矿山, 2020(10): 156-160.ZENG W N, REN L Y, WEI P G, et al. Effects and mechanism of micro-nano bubbles on typical fine oxidized minerals flotation [J]. Metal Mine, 2020 (10): 156-160.

    ZENG W N, REN L Y, WEI P G, et al. Effects and mechanism of micro-nano bubbles on typical fine oxidized minerals flotation [J]. Metal Mine, 2020 (10): 156-160.

    [36]

    NAZARI S, SHAFAEI S Z, SHAHBAZI B, et al. Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559:284-288.

    [37]

    ZHANG Z, REN L, ZHANG Y. Role of nanobubbles in the flotation of fine rutile particles[J]. Minerals Engineering, 2021, 172.

    [38]

    MA F, TAO D, TAO Y, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021.

    [39]

    荆树励, 李梅, 冉宇, 等. 微纳米气泡对细粒稀土矿物聚团行为的影响[J]. 矿业研究与开发, 2019, 39(3):113-117.JING S L, LI M, RAN Y, et al. Effect of micro-nano bubbles on aggregation behavior of fine-grain rare earth minerals[J]. Mining Research and Development, 2019, 39(3):113-117.

    JING S L, LI M, RAN Y, et al. Effect of micro-nano bubbles on aggregation behavior of fine-grain rare earth minerals[J]. Mining Research and Development, 2019, 39(3):113-117.

    [40]

    李军, 刘佳, 孙健翔, 等. 浮选法对非晶微硅粉提纯效果的研究[J]. 选煤技术, 2021(1): 136-141.LI J, LIU J, SUN J X, et al. Study on the effects of purification of noncrystallinemicro silica powder using flotation process [J]. Coal Preparation Technology, 2021 (1): 136-141.

    LI J, LIU J, SUN J X, et al. Study on the effects of purification of noncrystallinemicro silica powder using flotation process [J]. Coal Preparation Technology, 2021 (1): 136-141.

    [41]

    LIANG Y, ZHOU C, GUO Z, et al. Removal of cadmium, lead, and zinc from multi-metal–contaminated soil using chelate-assisted sedum alfredii hance[J]. Environmental Science and Pollution Research, 2019, 26(27):28319-28327. doi: 10.1007/s11356-019-06041-w

    [42]

    傅开彬, 秦天邦, 龙美樵, 等. 应用纳米气泡气浮应急修复重金属污染土壤[J]. 金属矿山, 2020(4):200-205.FU K B, QIN T B, LONG M Q, et al. Emergency remediation of heavy metal contaminated soil by nanobubbles flotation[J]. Metal Mine, 2020(4):200-205.

    FU K B, QIN T B, LONG M Q, et al. Emergency remediation of heavy metal contaminated soil by nanobubbles flotation[J]. Metal Mine, 2020(4):200-205.

    [43]

    KLANČNIK M. Coagulation and adsorption treatment of printing ink wastewater[J]. Acta Graphica: Znanstveni Časopis Za Tiskarstvo I Grafičke Komunikacije, 2014, 25(3-4):73-82.

    [44]

    LIU S, WANG Q, MA H, et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J]. Separation and Purification Technology, 2010, 71(3):337-346. doi: 10.1016/j.seppur.2009.12.021

    [45]

    李臣威, 张海军. 纳米气泡对锂电池电极材料浮选行为的影响[J]. 煤炭学报, 2021(S1):1-9.LI C W, ZHANG H J. Influence of nanobubbles on flotation behavior of electrode materials from spent lithium ions batteries[J]. Journal of China Coal Society, 2021(S1):1-9.

    LI C W, ZHANG H J. Influence of nanobubbles on flotation behavior of electrode materials from spent lithium ions batteries[J]. Journal of China Coal Society, 2021(S1):1-9.

  • 加载中

(6)

计量
  • 文章访问数:  1130
  • PDF下载数:  166
  • 施引文献:  0
出版历程
收稿日期:  2022-10-21
刊出日期:  2024-10-25

目录