Flotation Process Optimization of a Copper Molybdenum Polymetallic Ore in Xizang
-
摘要:
西藏某低品位斑岩型含银铜钼矿,原矿含Cu 0.35%、含Mo 0.018%、含Ag 2.18 g/t、含S 2.5%,铜矿物主要为黄铜矿,其次为辉铜矿,钼矿物主要为辉钼矿,硫矿物主要为黄铁矿,辉银矿为银的主要赋存矿物。黄铁矿的可浮性极好,采用“铜钼等可浮-强化选铜-铜硫分离”的流程,配合使用强选择性捕收剂BK-345,低碱环境下获得铜钼混合精矿,通过强化选铜提高铜金属回收,根据铜矿物微细粒嵌布的矿石特性,铜硫混合粗精矿超细磨至-20 μm,浮选闭路实验最终获得含Cu 26.88%、含钼1.65%、含Ag 110.5 g/t,Cu回收率61.2%、Mo回收率73.9%、Ag回收率40%的铜钼混合精矿,获得含Cu 19.07%、含Ag 112.7 g/t,Cu回收率24.7%、Ag回收率23.2%的铜精矿2,综合铜精矿含Cu 24.04%、含Mo 1.17%、含Ag 111.3 g/t,Cu回收率85.9%、Mo回收率82.3%、Ag回收率 63.2%。而采用“全硫浮选-铜硫分离”的流程,铜钼与硫分离需添加强石灰抑制,辉钼矿也受到较强抑制,获得的钼回收率较低,仅57.5%。相比混浮流程,在其他金属回收率略有提升的前提下,等可浮流程钼金属品位提升0.84个百分点,钼回收率提升16.4个百分点。
Abstract:A low-grade porphyry type silver bearing copper molybdenum ore in Xizang contains 0.35% Cu, 0.018% Mo, 2.18 g/t Ag and 2.5% S. The copper mineral is mainly chalcopyrite, followed by chalcocite. The molybdenum mineral is mainly molybdenite, the sulfur mineral is mainly pyrite, and the silver bearing mineral is silver. Pyrite has excellent floatability. The process of "floatability of copper and molybdenum - enhanced copper separation - copper sulfur separation" is adopted, combined with the use of strong selective collector BK-345, to obtain copper molybdenum mixed concentrate in low alkali environment. Through enhanced copper separation, the recovery of copper metal is improved. According to the ore characteristics of fine particles of copper minerals, the copper sulfur mixed coarse concentrate is superfine ground to -20 μm. The flotation closed-circuit test finally obtained the copper molybdenum mixed concentrate containing 26.88% Cu, 1.65% Mo, 110.5 g/t Ag, 61.2% Cu recovery, 73.9% Mo recovery and 40% Ag recovery, and obtained copper concentrate 2 containing 19.07% Cu, 112.7 g/t Ag, 24.7% Cu recovery and 23.2% Ag recovery. The comprehensive copper concentrate contained 24.04% Cu, 1.17% Mo and 111.3 g/t Ag, 85.9% Cu recovery, 82.3% Mo recovery and 63.2% Ag recovery. In the process of "total sulfur flotation copper sulfur separation", the separation of copper, molybdenum and sulfur needs to be restrained by adding strong lime, molybdenite is also strongly restrained, and the molybdenum recovery is low, only 57.5%. Compared with the mixed flotation process, on the premise that the recovery rate of other metals is slightly improved, the grade of molybdenum metal in the equal floatable process is increased by 0.84 percentage points and the recovery rate of molybdenum is increased by 16.4 percentage points.
-
-
表 1 原矿多元素分析结果/%
Table 1. Multi-element analysis results of the raw ore
Cu Mo Au* Ag* Pb Zn S As Re* SiO2 Al2O3 MgO CaO C Sn* TiO2 K2O Na2O 0.35 0.018 0.03 2.2 <0.01 <0.01 2.5 0.04 6.42 69.88 14.08 0.72 1.50 0.18 15.94 0.34 4.14 1.87 *单位为g/t。 表 2 原矿中铜、钼物相分析结果/%
Table 2. Phase analysis results of copper and molybdenum in the raw ore
原生
硫化铜
中的铜次生
硫化铜
中的铜氧化铜 总铜 辉钼矿
中的钼氧化钼
中的钼总钼 0.19 0.15 0.02 0.36 0.017 0.001 0.018 52.78 41.67 5.55 100.0 94.44 5.56 100.00 表 3 强化选铜回路铜硫分离抑制剂条件实验结果
Table 3. Condition test results of copper sulfur separation inhibitor in enhanced copper separation circuit
抑制剂条件/(g/t) 产品名称 产率/% Cu品位/% Cu回收率/% 石灰+BTB
1 500+50
(pH值12.9)铜钼粗精矿 1.62 14.67 62.8 铜精矿2 0.29 20.18 15.5 中矿1 2.21 0.67 3.9 中矿2 1.85 0.52 2.5 尾矿1 91.23 0.06 14.5 尾矿2 2.80 0.11 0.8 原矿 100.00 0.38 100.0 石灰 1 500
(pH值12.8)铜钼粗精矿 1.63 14.76 62.3 铜精矿2 0.37 16.85 16.1 中矿1 2.22 0.75 4.3 中矿2 1.80 0.51 2.4 尾矿1 91.58 0.06 14.2 尾矿2 2.40 0.11 0.7 原矿 100.00 0.39 100.0 石灰 1000
(pH值12.5)铜钼粗精矿 1.63 14.86 62.8 铜精矿2 0.69 9.26 16.6 中矿1 2.49 0.51 3.3 中矿2 1.85 0.53 2.5 尾矿1 91.28 0.06 14.2 尾矿2 2.06 0.11 0.6 原矿 100.00 0.39 100.0 石灰 500
(pH值12.0)铜钼粗精矿 1.62 15.01 63.0 铜精矿2 1.02 5.18 13.7 中矿1 2.67 0.72 5.0 中矿2 2.22 0.62 3.6 尾矿1 92.59 0.06 14.4 尾矿2 1.50 0.11 0.4 原矿 100.00 0.39 100.0 表 4 铜钼等可浮浮选闭路实验结果
Table 4. Closed-circuit test results of floatable flotation of copper and molybdenum
产品名称 产率/% 品位/% 回收率/% Cu Mo Ag* Cu Mo Ag 铜钼混精 0.8 26.88 1.65 110.50 61.2 73.9 40.0 铜精矿2 0.4 19.07 0.33 112.70 24.7 8.4 23.2 综合铜精矿 1.24 24.04 1.17 111.30 85.9 82.3 63.2 尾矿1 86.5 0.038 0.003 0.50 9.4 14.9 19.9 尾矿2 12.3 0.13 0.004 3.01 4.8 2.8 16.9 原矿 100.0 0.35 0.018 2.18 100.0 100.0 100.0 *单位为g/t。 表 5 铜钼混浮浮选闭路实验结果
Table 5. Closed -circuit test results of copper molybdenum mixed flotation
产品名称 产率/% 品位/% 回收率/% Cu Mo Ag* Cu Mo Ag 铜钼混精 1.3 22.88 0.81 108.60 84.3 57.5 62.9 尾矿1 85.7 0.04 0.003 0.52 10.2 14.0 19.9 尾矿2 13 0.15 0.040 2.98 5.5 28.4 17.3 原矿 100 0.35 0.018 2.24 100.0 100.0 100.0 *单位为g/t。 -
[1] 赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2):1-7.ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001
ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001
[2] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49 doi: 10.3969/j.issn.1000-6532.2020.01.009
ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49 doi: 10.3969/j.issn.1000-6532.2020.01.009
[3] 李育彪, 段婉青, 杨旭, 等. 铜钼硫化矿浮选分离中H2O2的作用机理研究[J]. 金属矿山, 2021(12):34-40.LI Y B, DUAN W Q, YANG X, et al. Study on the action mechanism of H2O2 in flotation separation of copper molybdenum sulfide ore[J]. Metal Mine, 2021(12):34-40.
LI Y B, DUAN W Q, YANG X, et al. Study on the action mechanism of H2O2 in flotation separation of copper molybdenum sulfide ore[J]. Metal Mine, 2021(12):34-40.
[4] 焦跃旭, 姚新, 陈鹏, 等. 新型高效辉钼矿抑制剂及其作用机理研究[J]. 矿冶工程, 2020, 40(6):30-33.JIAO Y X, YAO X, CHEN P, et al. Study on new high efficiency molybdenite inhibitor and its action mechanism[J]. mining and Metallurgy Engineering, 2020, 40(6):30-33. doi: 10.3969/j.issn.0253-6099.2020.06.008
JIAO Y X, YAO X, CHEN P, et al. Study on new high efficiency molybdenite inhibitor and its action mechanism[J]. mining and Metallurgy Engineering, 2020, 40(6):30-33. doi: 10.3969/j.issn.0253-6099.2020.06.008
[5] 张红英, 刘进, 徐少华, 等. 某低品位铜钼矿选矿工艺试验研究[J]. 有色金属(选矿部分), 2021(2):88-92.ZHANG H Y, LIU J, XU S H, et al. Experimental study on beneficiation process of a low-grade copper-molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2021(2):88-92.
ZHANG H Y, LIU J, XU S H, et al. Experimental study on beneficiation process of a low-grade copper-molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2021(2):88-92.
[6] 杨晓峰, 刘瑶瑶, 邹洪顺达, 等. 黑龙江某斑岩型铜钼矿的选矿实验研究[J]. 黑龙江科技大学学报, 2021, 31(4):422-427.YANG X F, LIU Y Y, ZOUHONG S D, et al. Experimental study on beneficiation of a porphyry copper molybdenum ore in Heilongjiang[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(4):422-427. doi: 10.3969/j.issn.2095-7262.2021.04.005
YANG X F, LIU Y Y, ZOUHONG S D, et al. Experimental study on beneficiation of a porphyry copper molybdenum ore in Heilongjiang[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(4):422-427. doi: 10.3969/j.issn.2095-7262.2021.04.005
[7] 冯上林. 某钨钼矿铜钼分离选矿试验研究[J]. 现代矿业, 2021, 7(7):167-168.FENG S L. Experimental study on copper molybdenum separation and beneficiation of a tungsten molybdenum ore[J]. Modern Mining, 2021, 7(7):167-168. doi: 10.3969/j.issn.1674-6082.2021.07.045
FENG S L. Experimental study on copper molybdenum separation and beneficiation of a tungsten molybdenum ore[J]. Modern Mining, 2021, 7(7):167-168. doi: 10.3969/j.issn.1674-6082.2021.07.045
[8] 逢军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
[9] 张兴旺, 孙志勇. 陕西某钼矿工艺矿物学[J]. 矿产综合利用, 2021(5):186-192.ZHANG X W, SUN Z Y. Technological mineralogy of a molybdenum mine in Shaanxi[J]. Multipurpose Utilization of Mineral Resources, 2021(5):186-192. doi: 10.3969/j.issn.1000-6532.2021.05.031
ZHANG X W, SUN Z Y. Technological mineralogy of a molybdenum mine in Shaanxi[J]. Multipurpose Utilization of Mineral Resources, 2021(5):186-192. doi: 10.3969/j.issn.1000-6532.2021.05.031
[10] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺研究[J]. 矿产综合利用, 2019(5):32-36.JIAN S, HU Y H, SUN W. Process study on a low- grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36. doi: 10.3969/j.issn.1000-6532.2019.05.007
JIAN S, HU Y H, SUN W. Process study on a low- grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36. doi: 10.3969/j.issn.1000-6532.2019.05.007
[11] 黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3):46-56.HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on flotation separation of copper and molybdenum[J]. Mining and Metallurgical Engineering, 2021, 41(3):46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011
HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on flotation separation of copper and molybdenum[J]. Mining and Metallurgical Engineering, 2021, 41(3):46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011
[12] 李莹, 龚丽, 梁泽跃. 云南某斑岩型铜钼矿混合浮选捕收剂实验及工业应用[J]. 矿产综合利用, 2021(2):23-26.LI Y, GONG L, LIANG Z Y. Experiment and application research on mixed flotation collector of copper-molybdenum porphyry mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(2):23-26. doi: 10.3969/j.issn.1000-6532.2021.02.005
LI Y, GONG L, LIANG Z Y. Experiment and application research on mixed flotation collector of copper-molybdenum porphyry mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(2):23-26. doi: 10.3969/j.issn.1000-6532.2021.02.005
[13] 达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选实验研究[J]. 矿产综合利用, 2021(3): 82-87.DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Xizang [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87.
DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Xizang [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87.
[14] 王国彬, 蓝卓越, 赵清平, 等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用, 2021(3):140-148.WANG G B, LAN Z Y, ZHAO Q P, et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.
WANG G B, LAN Z Y, ZHAO Q P, et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.
-