响应曲面法优化铅冶炼水淬渣回收有价金属

李辉, 邹琳, 曲超. 响应曲面法优化铅冶炼水淬渣回收有价金属[J]. 矿产综合利用, 2025, 46(1): 143-148. doi: 10.3969/j.issn.1000-6532.2025.01.018
引用本文: 李辉, 邹琳, 曲超. 响应曲面法优化铅冶炼水淬渣回收有价金属[J]. 矿产综合利用, 2025, 46(1): 143-148. doi: 10.3969/j.issn.1000-6532.2025.01.018
LI Hui, ZOU Lin, QU Chao. Optimization of Recovery of Valuable Metals from Lead Smelting Water Quenching Slags by Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 143-148. doi: 10.3969/j.issn.1000-6532.2025.01.018
Citation: LI Hui, ZOU Lin, QU Chao. Optimization of Recovery of Valuable Metals from Lead Smelting Water Quenching Slags by Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 143-148. doi: 10.3969/j.issn.1000-6532.2025.01.018

响应曲面法优化铅冶炼水淬渣回收有价金属

详细信息
    作者简介: 李辉(1985-),男,硕士研究生,工程师,主要研究方向为湿法冶金
  • 中图分类号: TD981;TF09

Optimization of Recovery of Valuable Metals from Lead Smelting Water Quenching Slags by Response Surface Methodology

  • 在酸性条件下氧压浸出水淬渣,通过响应曲面法的模型优化设计和分析,研究了浸出过程中氧压温度、硫酸浓度、液固比对选择性浸出率的影响,得到较佳优化浸出的工艺条件,并获得了二阶多项式模型。在氧压温度171.4 ℃、硫酸浓度48.62 g/L、液固比6.42 的较佳优化条件下,选择性浸出率模型预测值分别为95.59%,实验真实值平均浸出率为95.61%。

  • 加载中
  • 图 1  水淬渣的XRD

    Figure 1. 

    图 2  水淬渣的SEM

    Figure 2. 

    图 3  选择性浸出率的实际值与预测值的对比

    Figure 3. 

    图 4  影响因子为氧压温度和硫酸浓度的等高线与响应曲面

    Figure 4. 

    图 5  影响因子为氧压温度和液固比的等高线与响应曲面

    Figure 5. 

    图 6  影响因子为硫酸浓度和液固比的等高线与响应曲面

    Figure 6. 

    表 1  水淬渣的主要化学成分/%

    Table 1.  Main composition of water quenching slags

    CuPbZnFeSiO2MgOCaOAs
    1.410.036.2124.9320.281.7417.300.01
    下载: 导出CSV

    表 2  水淬渣中Cu物相分析结果

    Table 2.  Phase analysis results of Cu in lead smelting water quenching slags

    名称硫化铜氧化铜金属铜其他铜共计
    含量/%0.890.170.210.141.41
    占有率/%63.1212.0714.899.92100.00
    下载: 导出CSV

    表 3  水淬渣中Fe物相分析结果

    Table 3.  Phase analysis results of Fe in lead smelting water quenching slags

    名称硅酸铁磁性氧化铁金属铁氧化铁硫化铁共计
    含量/%14.177.640.212.770.1424.93
    占有率/%56.8430.650.8411.110.56100.00
    下载: 导出CSV

    表 4  中心组合设计响应曲面实验的因素水平及编码值对照

    Table 4.  Level and coded symbols of variable for central composite design test

    种类因子编码变量水平t步进值
    a=-1.68-101a=+1.68
    氧压温度/℃A153.18160170180186.8210
    硫酸浓度/(g/L)B23.1830405056.6210
    液固比/(L/S)C4.325677.681
    下载: 导出CSV

    表 5  中心组合设计及结果

    Table 5.  Arrangement and results of central composite design

    序号 影响因子 浸出率 /% 选择性浸
    出率Z/%
    A/℃ B/(g/L) C/(L/S) Cu Fe
    1 186.82 40.00 6.00 96.20 0.89 95.31
    2 170.00 40.00 7.68 94.46 1.25 93.21
    3 160.00 50.00 7.00 96.23 1.56 94.67
    4 170.00 40.00 4.32 91.06 1.06 90.00
    5 180.00 50.00 7.00 96.62 1.65 94.97
    6 180.00 50.00 5.00 95.92 1.19 94.73
    7 180.00 30.00 7.00 94.39 0.50 93.89
    8 170.00 40.00 6.00 96.36 1.56 94.80
    9 160.00 30.00 7.00 90.95 1.25 89.70
    10 170.00 40.00 6.00 94.80 1.01 93.79
    11 160.00 30.00 5.00 88.04 1.16 86.88
    12 170.00 40.00 6.00 94.71 1.04 93.67
    13 170.00 40.00 6.00 94.98 1.10 93.88
    14 170.00 40.00 6.00 95.07 1.10 93.97
    15 180.00 30.00 5.00 91.64 2.68 88.96
    16 170.00 40.00 6.00 94.85 1.00 93.85
    17 170.00 56.82 6.00 96.81 1.94 94.87
    18 160.00 50.00 5.00 96.15 2.28 93.87
    19 170.00 23.18 6.00 87.88 0.39 87.49
    20 153.18 40.00 6.00 93.65 0.84 92.81
    下载: 导出CSV

    表 6  选择性浸出率模型可信度分析

    Table 6.  Credibility analysis of selective leaching ratio

    标准差平均值C.V./%PressR2R2AdjR2Pred信噪比
    0.3592.720.3710.270.990 50.981 90.919 135.663
    下载: 导出CSV

    表 7  选择性浸出率的方差分析结果

    Table 7.  Analysis of variance(ANOVA) for selective leaching ratio

    方差分析平方和自由度均方值FPb>F
    模型125.48913.94115.420.000 3
    A9.9119.9182.05<0.000 1
    B71.38171.38590.87<0.000 1
    C14.74114.74122.03<0.000 1
    AB3.2613.2627.020.000 4
    AC0.310.32.490.145 9
    BC5.6315.6346.59<0.000 1
    A20.1110.110.900.365 0
    B212.50112.50103.48<0.000 1
    C28.7918.7972.78<0.000 1
    残差1.21100.12
    下载: 导出CSV
  • [1]

    王振东, 雷霆, 施哲, 等. 烟化法处理鼓风炉炼铅炉渣试验研究[J]. 云南冶金, 2007, 36(1):45-47.WANG Z D, LEI T, SHI Z, et al. Experimentation on treatment of slag from lead smelting furnace by fuming process[J]. Yunnan Metallurgy, 2007, 36(1):45-47. doi: 10.3969/j.issn.1006-0308.2007.01.011

    WANG Z D, LEI T, SHI Z, et al. Experimentation on treatment of slag from lead smelting furnace by fuming process[J]. Yunnan Metallurgy, 2007, 36(1):45-47. doi: 10.3969/j.issn.1006-0308.2007.01.011

    [2]

    梁彦杰. 铅锌冶炼渣硫化处理新方法研究[D]. 长沙: 中南大学, 2012.LIANG Y J. Study on novel sulfidation technologies in managing Zn &Pb smelting waste[D]. Changsha: Central South University, 2012.

    LIANG Y J. Study on novel sulfidation technologies in managing Zn &Pb smelting waste[D]. Changsha: Central South University, 2012.

    [3]

    孙红燕, 孔馨, 张瑾勋, 等. 铅冶炼水淬渣球磨工艺研究[J]. 湿法冶金, 2019, 38(167):80-83.SUN H Y, KONG X, ZHANG J X, et al. Ball-milling of water quenching slag from lead smelting[J]. Hydrometallurgy of China, 2019, 38(167):80-83.

    SUN H Y, KONG X, ZHANG J X, et al. Ball-milling of water quenching slag from lead smelting[J]. Hydrometallurgy of China, 2019, 38(167):80-83.

    [4]

    朱国邦. 从粗铅冶炼鼓风炉水淬渣中回收锌的试验研究[J]. 云南冶金, 2017, 46(5): 4.ZHU G B. The experimental study on zinc recovery from the water-quenched slag of crude lead smelting furnace[J]. Yunnan Metallurgy, 2017, 46(5): 39-42.

    ZHU G B. The experimental study on zinc recovery from the water-quenched slag of crude lead smelting furnace[J]. Yunnan Metallurgy, 2017, 46(5): 39-42.

    [5]

    Shu Y, Ma C, Zhu L, et al. Leaching of lead slag component by sodium chloride and diluted nitric acid and synthesis of ultrafine lead oxide powders[J]. Journal of Power Sources, 2015, 281(may 1): 219-226.

    [6]

    Kim E, Horckmans L, Spooren J, et al. Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues[J]. Hydrometallurgy, 2017, 169:372-381. doi: 10.1016/j.hydromet.2017.02.027

    [7]

    Ozge Gok, Corby G Anderson. Dissolution of low-grade chalcopyrite concentrate in acidified nitrite electrolyte[J]. Hydrometallurgy, 2013, 134-135.

    [8]

    Azizi D, Shafaei S Z, Noaparast M, et al. Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9):2295-2305. doi: 10.1016/S1003-6326(11)61463-5

    [9]

    信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151.XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    [10]

    马爱元, 郑雪梅, 李松, 等. 响应曲面优化NH3-(NH4)3AC-H2O体系浸出冶金废渣提锌工艺研究[J]. 矿产综合利用, 2021(1):186-192.MA A Y, ZHENG X M, LI S, et al. Study on zinc extraction process of NH3-(NH4)3AC-H2O system by response surface optimization[J]. Multipurpose Utilization of Mineral Resources, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

    MA A Y, ZHENG X M, LI S, et al. Study on zinc extraction process of NH3-(NH4)3AC-H2O system by response surface optimization[J]. Multipurpose Utilization of Mineral Resources, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

  • 加载中

(6)

(7)

计量
  • 文章访问数:  34
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-04-04
刊出日期:  2025-02-25

目录