-
摘要:
针对内蒙古某钼矿存在嵌布状态复杂、泥化现象严重、降低尾矿品位难等问题,采用LKD-3捕收剂对其进行浮选实验研究。实验分析结果表明,LKD-3对辉钼矿具有良好的选择性,LKD-3中2,3,5-三甲基萘与碳十醇发生协同作用,可更有效地吸附在钼矿物表面,增强钼矿物表面疏水性,稳定其与药剂的吸附作用,显著提高钼精矿的品位与回收率;浮选实验结果表明,采用LKD-3对钼品位0.164%的原矿进行一粗五精二扫的闭路浮选实验,获得钼品位53.44%,钼回收率91.79%的钼精矿,比同流程、同药剂制度下采用现场煤油为捕收剂浮选闭路实验时钼精矿品位增加6.48个百分点,回收率增加4.17个百分点。研究结果对提高难选钼矿生产指标、减少资源浪费等具有理论指导意义和实践价值。
Abstract:In view of the problems of complex dissemination state, serious argillization and difficult to reduce tailings grade of a molybdenum mine in Inner Mongolia, LKD-3 collector was used to conduct the flotation test. The experimental results show that LKD-3 has good selectivity to molybdenite, and the synergistic effect of 2,3,5 - trimethylnaphthalene and carbon decanol in LKD-3 can more effectively adsorb on the surface of molybdenum minerals, enhance the hydrophobicity of molybdenum minerals, stabilize its adsorption with the reagent, and significantly improve the grade and recovery of molybdenum concentrate. Flotation test results show that the molybdenum concentrate with molybdenum grade of 53.44% and recovery of 91.79% is obtained by using LKD-3 to conduct a closed-circuit flotation test of one roughing, five cleaning and two scavenging for the raw ore with molybdenum grade of 0.164%. The grade of molybdenum concentrate increased by 6.48 percentage points and the recovery increased by 4.17 percentage points compared with the closed-circuit test using kerosene as collectors at the same process and reagent system. Research results have theoretical guiding significance and practical value for improving the production index of refractory molybdenum ore and reducing the waste of resources.
-
Key words:
- Muddy molybdenum ore /
- Compound collector /
- Synergistic effect
-
-
表 1 原矿多元素分析结果/%
Table 1. Multielement analysis of the raw ore
Au* Ag* Mo Cu Pb Zn Fe As MgO K2O CaO SiO2 Al2O3 S 0.07 1.36 0.164 0.001 7 0.024 0.011 0.85 0.0353 0.073 3.33 0.75 80.14 11.52 0.77 *单位为g/t。 表 2 原矿矿物相对含量检测结果
Table 2. Determination of the relative mineral content of the raw ore
矿物 黄铁矿 辉钼矿 方铅矿 闪锌矿等 石英 长石 高岭土 云母及其他 含量/% 1.21 0.21 0.01 0.01 73.92 16.37 5.74 2.53 表 3 给矿粒度筛析实验结果
Table 3. Screening test results of feeding particle size
粒级/mm 品位/% 产率/% 筛上累计产率/% 分布率/% +0.10 0.20 42.37 42.37 51.67 -0.10+0.074 0.14 10.36 52.73 8.84 -0.074+0.045 0.12 12.25 64.98 8.96 -0.045+0.038 0.11 5.37 70.35 3.60 -0.038 0.15 29.65 100.00 26.93 合计 0.164 100.00 / 100.00 表 4 实验室药剂筛选实验结果
Table 4. Laboratory drug screening test results
捕收剂种类 药剂用量/(g/t) 产品名称 产率/% 品位/% 回收率/% 现场煤油
煤油:80
2#油:60钼粗精矿 3.86 3.450 80.31 尾矿 96.14 0.034 19.69 给矿 100.00 0.166 100.00 优化前 LKD-1 LKD-1:68
煤油:12
2#油:25钼粗精矿 3.58 3.610 81.33 尾矿 97.09 0.032 18.67 给矿 100.00 0.165 100.00 LKD-2 LKD-2:68
煤油:12
2#油:25钼粗精矿 3.79 3.570 81.45 尾矿 96.21 0.032 18.55 给矿 100.00 0.166 100.00 优化后 LKD-3 LKD-3:80
2#油:40钼粗精矿 3.58 3.860 83.15 尾矿 97.42 0.029 16.85 给矿 100.00 0.166 100.00 LKD-4 LKD-4:120 钼粗精矿 3.50 3.920 82.56 尾矿 97.50 0.030 17.44 给矿 100.00 0.166 100.00 表 5 接触角测试结果
Table 5. Contact angle test results
名称 天然辉钼矿 煤油 LKD-3 接触角/° 63.50 77.43 92.10 表 6 闭路实验结果
Table 6. Closed - circuit test results
名称 产率/% 品位/% 回收率/% 精矿 0.28 53.44 91.79 尾矿 99.72 0.0135 8.21 原矿 100.00 0.164 100.00 -
[1] 王乾帅, 陶东平, 赵通林, 等. 辉钼矿干法旋转摩擦电选预抛尾研究[J]. 矿产综合利用, 2021(6):179-184.WANG Q S, TAO D P, ZHAO T L, et al. Study of molybdenite pre-concentration by dry rotary triboelectrostatic separation[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184. doi: 10.3969/j.issn.1000-6532.2021.06.031
WANG Q S, TAO D P, ZHAO T L, et al. Study of molybdenite pre-concentration by dry rotary triboelectrostatic separation[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184. doi: 10.3969/j.issn.1000-6532.2021.06.031
[2] 张宝元, 钟宏. 辉钼矿的浮选及其捕收剂的研究进展[J]. 矿产保护与利用, 2010(3):52-54.ZHANG B Y, ZHONG H. Research progress on flotation of molybdenite and its collectors[J]. Conservation and Utilization of Mineral Resources, 2010(3):52-54. doi: 10.3969/j.issn.1001-0076.2010.03.014
ZHANG B Y, ZHONG H. Research progress on flotation of molybdenite and its collectors[J]. Conservation and Utilization of Mineral Resources, 2010(3):52-54. doi: 10.3969/j.issn.1001-0076.2010.03.014
[3] 张美鸽, 徐秋生, 刘迎春. YC药剂工业实验研究[J]. 有色金属(选矿部分), 2007(2):48-50.ZHANG M G, XU Q S, LIU Y C. A study on industry experiments of YC flotation[J]. Nonferrous Metals(Mineral Processing Section), 2007(2):48-50.
ZHANG M G, XU Q S, LIU Y C. A study on industry experiments of YC flotation[J]. Nonferrous Metals(Mineral Processing Section), 2007(2):48-50.
[4] 马晓炜, 张晓平, 武俊杰, 等. 河北某钼矿选矿工艺试验研究[J]. 矿产综合利用, 2014(3):47-50.MA X W, ZHANG X P, WU J J, et al. Experimental study on mineral processing technology of a molybdenum ore in Hebei Province[J]. Multipurpose Utilization of Mineral Resources, 2014(3):47-50. doi: 10.3969/j.issn.1000-6532.2014.03.011
MA X W, ZHANG X P, WU J J, et al. Experimental study on mineral processing technology of a molybdenum ore in Hebei Province[J]. Multipurpose Utilization of Mineral Resources, 2014(3):47-50. doi: 10.3969/j.issn.1000-6532.2014.03.011
[5] 王立刚, 叶岳华, 胡志强, 等. 蒙古国某斑岩型铜矿伴生资源高效回收工艺技术研究[J]. 中国矿业, 2018(6): 285-288. WANG L G, YE Y H, HU Z Q, et al. Study on the high efficient recovery process technology of associated molybdenum resources in a porphyry copper mine in Mongolia[J]. China Mining Magazine, 2018(6): 285-288.
[6] Qidong Zhang, Xiaoli Li, Mingming Li, et al. Study on flotation separation experiment of molybdenite using new type collector[J]. Advanced Materials Research, 2013(753-755):81-84.
[7] Bocharov, V. A, Ignatkina, V. A. & Alekseichuk, D. A. Influence of mineral compositions and their modification on the selection flowchart and collectors of selective flotation of ores of nonferrous metals[J]. Russ. J. Non-ferrous Metals, 2012(53):279-288.
[8] 苏拓宇, 姜效军, 张琦, 等. 芳香烃与磷化物协同分选低品位铜钼矿[J]. 矿业研究与开发, 2022, 42(1): 48-52.SU T Y, JIANG X J, ZHANG Q, et al. Separation of low-molybdenum ore by the synergistic effect of aromatic hydrocarbons and phosphide[J]. Mining Research and Development, 2022, 42(1): 48-52.
SU T Y, JIANG X J, ZHANG Q, et al. Separation of low-molybdenum ore by the synergistic effect of aromatic hydrocarbons and phosphide[J]. Mining Research and Development, 2022, 42(1): 48-52.
-